
i

Cover

Your How-To Guide
on Creating Real-
World Compilers

Contents at a Glance:
Table of Contents iii
About the Author iv
Acknowledgements v
Chapter 1 – Introduction 1
Chapter 2 – Gearing Up 8
Appendix A – Installing Dev-C++ 23

Contents at a Glance
Page

ii

Compiler

Tutorial

Table of Contents
Cover... i

Contents at a Glance:... ii
Table of Contents.. iii
About the Author... iv

Acknowledgements .. v
Chapter 1.. 1

Overview.. 1
Intended Audience... 2
Structure.. 3
.NET Support... 3
Hardware Requirements.. 3
Operating System Requirements.. 4
Software Requirements... 4
Notations Used.. 4
Symbols Used.. 5
My Website:.. 6
Conclusion.. 6

Chapter 2.. 7
Introducing KoolB.. 7
Simply KoolB... 8
Compilers vs. Interpreters... 9
The Compile Process... 11
What Languages?... 12
Making a Tool’s Inventory.. 14
A C++ Compiler... 15
Creating Space for KoolB... 16
Choosing an Assembler... 16
Choosing a Linker... 17
Choosing a Resource Compiler... 18
Conclusion... 18
Installing Dev-C++... 21

Table of Contents
Page

iii

Compiler

Tutorial

About the Author
Brian C. Becker first become interested in programming during his high
school years. He dabbled in C and some freeware programming languages he
found on the Internet. After learning many variants of BASIC, he went on to
learn C and C++, which soon became his language of choice. Assembly
language, PHP, Perl, C#, and many other languages soon followed.

He became interested in compilers when his favorite programming language
RapidQ went commercial. Although it took several years, he was determined
to build his own compiler. During the hard process, he decided to document
his progress so that others desiring to build their own compilers could have
an easy to read tutorial to follow without having to learn everything in the
school of hard knocks.

Brian is currently attending UCF (University of Central Florida) in Orlando for
a BS in Computer Engineering. Involved in the UCF Robotics club, the
Intelligent Systems Lab, and his church youth group, he leads an active life
outside of academics. Currently, his attentions are turning more towards
artificial intelligence and how new techniques can be applied to the ever
expanding world of programming.

About the Author
Page

iv

Compiler

Tutorial

Acknowledgements

Acknowledgements

Thanks to Many People:

Acknowledgements
Page

v

Compiler

Tutorial

• First and foremost, I thank my Lord God Jesus
for his unfailing love and patience when I mess
up.

• A close second, I want to thank my family, who
puts up with me always being on the computer
working on something and their interest in my
projects.

• My sister, who so kindly points out when my
designs aren’t good and helps re-design them.

• Steve of QDepartment group
(http://groups.yahoo.com/group/QDepartment
), who has put many hours to make the group
a great resource for beginner compiler
developers like myself. I owe him much for his
patient answers to my sometimes stupid
questions.

• Jared, who has stuck with compilers and
showed great interest in my tutorial.

• Slowbyte, for suggesting a better memory
management scheme for my compilers

• Ryan for reminding me to work on the Linux
version, and for his helpful comments.

• Everybody at RQCompiler group, who have
often given input and suggestions.

• Jack Crenshaw, who first started me writing
compilers with his “Let’s Build A Compiler”
tutorial series.

• William Yu, who first got me interested in
programming with his Rapid-Q compiler.

• Jeremy Gordon, author of GoLink and the
NASM development team.

• Many others who I cannot thank enough.

Thanks Everybody!

Chapter 1Chapter 1
Introduction

Welcome to my tutorial!

Here you will begin to explore what I call compiler
technology: the ins and outs of building compilers.
You will learn from the ground up how to design a
programming language and then create a
compiler.

I will show you how to create a simple, yet
powerful BASIC programming language and
compiler using C++. At times, building compilers
can be frustrating, but often it is fun and
rewarding. This is especially true when you
consider that compilers saved us from what this
cartoon calls real programming.

Fortunately for us, we don’t have to be ‘real’
programmers – we have ‘real’ compilers! All
humor aside, I hope you find this tutorial easy to
understand and fun to read. Enjoy!

Chapter 1
Compiler

Tutorial

Page

1

Overview
Developing compilers can be a daunting task. I’m here to make that job
easier by providing you with a ‘step-by-step’ handbook showing you exactly
how you can build a compiler using C++. I will show you how to start off with
a simple C++ project and develop it into a full-blown real-life compiler.

The compiler you will learn to build will be a BASIC compiler. Why BASIC?
BASIC has long been considered an ideal language for teaching because of its
simplicity, so I will continue that tradition. Also, BASIC code compiles quite
easily, making your job less difficult. Once done, the compiler will be able to
create simple, yet complete programs for Windows or Linux. In addition, I
hope you will branch out and add personal touches to the language as I show
you how to design and build it.

You will notice that I try to simplify things as much as possible. When two
routes appear, I typically choose the easier. You might see my choice as less
efficient or slower, but I aim to teach, not develop commercial or efficient
compilers. And if I sling phrases like “Well, if you want to implement a
recursive descent parsing engine with a STL enhanced tokenizing capabilities
and an infinite number of look-a-heads, with profiling support to determine
the efficiency coefficient of highly optimized inline routines…” I think you
agree that it just doesn’t work too well, to put it mildly. That would put even
me to sleep.

Intended Audience
I do assume some things
about you. First, I
assume you are a driven
genius overachiever who
handles several jobs in
addition to a full load of
academic courses for
your 5th doctorate. You
stay up until midnight
studying followed by
several hours of relaxing
where you might
program 2048 bit fractal
encryption programs. You only sleep when forced to.

Ok, perhaps I assume a bit too much!

However, as a writer, I aim for particular readers – a group of people who will
benefit from what I write. I call this my intended audience.

• You are an average programmer and somehow compilers have caught
your attention, so you are reading this to find out more. If this is you,
welcome aboard and I think you will find compilers a fascinating
subject as you learn to design and build them.

Introduction
Compiler

Tutorial

Page

2

• You have thought of a great programming language or want to develop
a compiler, but might not know where to start. Great! You’ve come to
exactly the right place. I’ll teach you how to develop a compiler and
discuss important issues that relate, no matter what language you’ve
thought up.

• You are a student and need that extra boost to understand compilers
or complete that project. In this case, you may or may not have come
to the right spot. Some courses use ‘compiler compilers,’ something I
won’t cover. If your professor uses these, you had best find a
newsgroup or a tutorial that details their use. Otherwise, come on in
and join the learning.

This tutorial does deal with some advanced computer related technologies –
you just cannot escape that. I’ll do my best to minimize the learning curve,
but to avoid teaching you everything; I do assume some things about you:

• You can use Windows or Linux. If I have interrupted your party
celebrating your mastery of double-clicking, this tutorial is probably
not for you!

• You can program decently in C or C++. If you don’t know C++ very
well, but can pick it up as we go along, that’s fine too. You can check
out some resources on the Internet: www.cplusplus.com and
www.cprogramming.com.

• You understand the basic concepts of assembly language. Ouch! This
might not hit home for you, but don’t worry. I will explain all assembly
language I use as thoroughly as I can. Paul Carter has written a great
e-book on modern PC assembly language, and I highly recommend
you check it out. You can find his easy-to-read e-book at
www.drpaulcarter.com/pcasm.

Structure
I have structured this tutorial like a how-to guide: each chapter builds on
previous ones. I begin by laying the foundation for the compiler. You might
find this a little uninteresting to begin with, but a good foundation alleviates
much pain later on. I will then move onto designing the BASIC programming
language and showing you how to develop the compiler to produce working
programs. Lastly, I will show you some advanced topics concerning the
compiler, such as optimization.

.NET Support
A promising new technology is emerging from Microsoft called the .NET
Framework. Although it resembles a rip-off of Java, it goes much deeper. I
won’t go into much detail other than I am closely watching the development
of .NET as it influences future compiler developments. At this point, I don’t
see a need to abandon traditional programming methods, but in the future, I
might write more on this subject.

Chapter 1
Compiler

Tutorial

Page

3

Hardware Requirements
To effectively use this tutorial, I suggest you follow along with a PC to test
out some of the code I present. A minimal PC with a 233 MHz processor and
32 MB of RAM (or any computer produced after 1998 or so) should be able do
everything in this tutorial, but note that some actions, such as compiling, can
take much longer (several minutes). You will need some free hard drive
space; about a 50 to 75 MB should do it for the C++ compiler, project files,
and any other files.

Overheard: Is it possible to put Windows 95 on a Commodore 64?

Some things just don’t work to well if you don’t have a capable computer!

Operating System Requirements
I will use the widely popular Windows Operating System (OS), mainly
because most people know how to use it. The version doesn’t matter much,
as long as you have Windows 95 or above. However, I know many Linux fans,
and I have therefore modified this tutorial to work with Linux as well. So
either way, you will learn how to build a compiler on your platform. I do,
however, assume that Linux users know their way around and can compile
and develop on their own.

Unfortunately, Mac users won’t benefit from this tutorial nearly as much
because I don’t have a Mac and cannot develop a compiler on a Mac. You can
try emulation software such as Virtual PC to follow along.

Software Requirements
No, you don’t need to guard your wallet. If you have a commercial C++
compiler, such as Microsoft Visual C++, I heartily recommend using it.
However, for those of us who prefer to keep our hard-earned money, follow
my lead: use Dev-C++, a free C++ compiler with a great IDE (Integrated
Development Environment). It might not have the caliber of commercial
software, but it sure does the job quite well, especially considering the price.
In the next chapter, I will show you how to download and set it up.

Notations Used
I will use several notations throughout this tutorial. The first is to present all
code in a monospace font. This includes code listings and snippets of code. In
addition to a monospace font, I will use syntax highlighting with the code
listings to make it easier to read and understand. For those not familiar with
syntax-highlighting, here is a sample:

Without Syntax-Highlighting:

#include <iostream>
#include <stdlib.h>

int main(int argc, char *argv[])

Introduction
Compiler

Tutorial

Page

4

{
 //Add 2 + 2 and the wait for user
 cout << "2 + 2" << 2 + 2 << endl;
 system("PAUSE");
 return 0;
}
With Syntax-Highlighting:

#include <iostream>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 //Add 2 + 2 and the wait for user
 cout << "2 + 2" << 2 + 2 << endl;
 system("PAUSE");
 return 0;
}

Symbols Used
I remember the first programming book I ever read: “Absolute Beginner’s
Guide to C” by Gerg Perry. It had these boxes with icons of skulls and bombs
to indicate when trouble was not far off. I, in my ignorant mind, thought that
my computer might actually break down or something. Happily, I learned
quickly to the contrary, but I still like the concept of icons that designate
special topics. So I’m including some of my own:

Forked Paths Forked paths boxes will offer insights on why I chose
to use one method over another. This is the rare
occasion where I will discuss in-depth the pros and
cons of doing things one way versus another way.

Chapter 1
Compiler

Tutorial

Page

5

Helpful Hints

Other Resources

Watch It!

Explore Further

Helpful Hint boxes offer advice or hints about
anything and everything. I might offer a tip on how
to accomplish something more easily. I may recollect
some things I found helpful when I first started. Or
you may just find random ramblings that may or
may not pertain to your situation.

Watch It! boxes issue dire warnings about the
consequences of carelessness in an area. Here I will
embarrass myself by recording some of the things I
did wrong. I will also discuss some possible bogs
that you don’t want to get caught in. Pay close
attention to these boxes to avoid nasty pitfalls.

Other Resources boxes will give you suggestions on
other reading or research material you might find
helpful. To help balance out subjects I don’t cover
that well, I will at least point you in directions where
you can learn what I omitted. Books, Internet
websites, and online tutorials might worm their way
into these boxes.

Explore Further boxes encourage you to do some
experimenting on your own. I might give you a
puzzle to solve, show you an interesting feature to
implement, or ask a question and leave it up to you
to find out. Once you have the topic I’ll give you a
couple of tips, and leave you to it.

Introduction
Compiler

Tutorial

Page

6

My Website:
My website at www.BrianCBecker.com contains much more information on
programming, compilers, and so forth. A quick list of items of interest that
you can find:

• This tutorial in different formats for printing, online viewing, or
downloading.

• The packages of source code and examples that accompany each
chapter.

• Other tutorials and resources to continue your compiler education.

• A contact form where you can e-mail me questions, comments,
suggestions, etc.

• Forums where you can discuss compilers and compiler technology

Conclusion
That’s it for the introduction. You now know where I am heading and what
you will learn along the way.

In Chapter 2, you will get a better feel for compilers, their components, and
selecting the right tools. As much as I would like to jump right in and start
building compilers, it isn't always best to do so without any preparation. By
the time you finish Chapter 2, you will be all ready to start working on
creating compilers.

In fact, at the end of the chapter you will be ready for anything those
compilers might want to throw at you: tricks, monkey wrenches, or even
grenades. OK, nothing short of armor and military training can prepare you
for grenades, but you should be in good shape to actually start fooling around
with compilers.

I also realize that I might have some relatively new programmers in the
audience. So I will also take some time to explain some of the components of
a compiler system and go into detail setting up a C++ compiler, such as Dev-
C++. For those familiar with C++ programming and how compilers work,
skimming the chapter should be enough to get you started.

I hope to see you next time with Chapter 2, where we get ready to start
doing some work!

Chapter 1
Compiler

Tutorial

Page

7

Chapter 2Chapter 2
Gearing Up

Chapter 2
Compiler

Tutorial

Welcome back to the second chapter of my
Compiler Tutorial!

In the Introduction, I gave you an overview of this
tutorial and some basic requirements.

Here in Chapter 2, I will show you how to prepare
to start building a compiler. I will cover exactly
what a compiler is and how it differs from an
interpreter. Additionally, I will guide you through
the typical compile process. Finally, I will show you
how to get setup to start developing your own
compiler.

By the time you finish this chapter, you should be
able to:

• Explain the differences between a compiler and
interpreter.

• Understand how a compiler, assembler, resource
compiler, and linker all work together to produce
programs.

• Research and select the right tools for the job.

• Choose the right language to write your compiler.

• Obtain, install, and configure all your tools.

• Be ready to start writing a compiler!

This chapter prepares you for the next chapter
where you will learn to build a complete compiler.
If you are already familiar with this material, feel
free to skim this chapter and then proceed to the
next.

Page

8

Introducing KoolB
Now that you have decided to continue reading my tutorial, I’ll introduce you
to your mascot for the book: KoolB, your very own example compiler.

In order to actively show you how to build your own compiler, I’m going to
show you how I personally built my own KoolB BASIC compiler. This way I
can teach you not only how to build a compiler, but give you a practical
example that you can use and extend on your own. Instead of grunting and
pointing in every direction, I can show you exactly what I mean. You can
even copy my code for learning or as a basis for your experiments in
compilers.

So say hello to our mascot, KoolB! You will become very familiar with KoolB
over the course of this tutorial.

Helpful Hints

Gearing Up
Compiler

Tutorial

Naming Your Compiler

Giving your compiler a name is a very important
part of compiler development. Go for a name that
is:

• Short

• Memorable

• Distinctive

For example, I’d have a tough time trying to
remember a name like MyVeryFirstCompiler, even
if it is distinctive.

Likewise, naming your compiler QuickBASIC or
QBasic probably isn’t a good idea either. Somebody
searching for your compiler on a search engine will
find thousands of references to totally different
compiler! So think carefully about what you want
to present.

For the record, KoolB was a name I picked out of
the air. Originally, the name was Kool-Bee, but
KoolB looks so much kooler. Also, a search on
Google turned up only a handful of links. So the
name KoolB does meets all three requirements.

Page

9

Simply KoolB
To give you a taste of building compilers, I will show you how to build a very
simple, yet complete compiler in the next chapter. This will not be the real
version of KoolB, because that will take more than a single chapter. This
compiler will accept only several commands, but will compile real programs.
Because it is so plain, a good name is Simply KoolB.

I would love to jump right in and start building Simply KoolB. Unfortunately,
as in many projects, you first need to go through a planning stage. This is
exactly what this chapter is. I will show you all the tools you need to build a
compiler like Simply KoolB and then how to set them up.

For readers who are just getting started in building compilers, I suggest you
follow along as if you were building Simply KoolB yourself. That way you get
hands on experience. Then once you feel more comfortable with developing
compilers, you can start adding some of your own features to Simply KoolB
(and later, the KoolB compiler).

For readers who are more advanced and have already dabbled some in
compilers, I suggest you follow along and use this chapter to get ready to
start building your own compiler. Also, feel free to use KoolB as a base for
your compiler.

Compilers vs. Interpreters
The first order of business is to decide whether Simply KoolB or any
programming language you design will be a compiler or an interpreter. Both
have pros and cons, and often the decision is a choice of personal style
(unless of course your boss or professor has a different idea).

When programming anything, you start out with a text file containing the
programming language (like BASIC or C++). This text file is referred to as
the source code. But the computer can’t understand this source code. For
example, when you write a program, you can’t just throw it at the computer
and say: “Here, now run it!” Why not?

Because the computer doesn’t understand English. To test this, try telling
your computer to turn on when you get up in the morning. No, nothing
happens (and if it does, I’d be a little frightened!). Computers don’t speak our
languages. So you need a compiler to translate your source code to the
language your computer understands.

The language the computers understand is binary language, or long series of
zeros and ones. It is definitely not a pretty sight for humans to read, but
that’s what the computer likes. This binary language is stored in a file called a
program and is just a bunch of instructions telling the computer what to do
(just like your mother used to do).

An interpreter does the same thing in a bit different manner. Instead of
translating the source code to a program that the computer can understand
before the program is run, the interpreter translates the source code as the
program runs. For instance, whereas a compiler might convert 2 + 2 to

Chapter 2
Compiler

Tutorial

Page

10

binary language and then tell the computer to run it, an interpreter looks at 2
+ 2 and then manually adds the numbers together.

The classic example of this is a foreign language translator, such as Spanish
to English translator. In the example of a compiler, the foreign language
translator will spend an hour translating an entire document from Spanish to
English. Then any English speaking person can read the paper.

In the example of an interpreter, the foreign language translator will wait
until somebody needs to read the document. Unfortunately, the reader
cannot read Spanish, so the foreign language translator has to sit down and
read him the paper, translating it to English as he reads.

As you can see, the compiler translates everything all at once whereas the
interpreter translates as parts as needed. The main disadvantage to an
interpreter is that the interpreter must always be available to translate to
anybody at any time. The main disadvantage to a compiler is that sometimes
a lot of time is needed for the initial translation.

So which approach should you take? In truth, it depends on your needs.

Compiler Advantages:

• You get faster, more compact programs

• You learn the internals of computers

• You have a more professional programming language

Compiler Disadvantages:

• You have to learn & use assembly language

• You don’t have as much control over debugging

• You have to put in much more work to make it cross-platform

Interpreter Advantages:

• You can write it faster because of less complexities

• You can debug it faster

• You can write cross-platform interpreters easily

Interpreter Disadvantages:

• You get slower programs

• The interpreter must always be distributed with the application

If you look at this list, you might be tempted to expect that Simply KoolB will
be an interpreter and that I will concentrate on building interpreters. That is
not the case, however.

Why not? After all, it seems easier overall. The main reason is that compilers
have a greater status than interpreters because they generate much faster
and more efficient programs. Also, you will learn more.

Gearing Up
Compiler

Tutorial

Page

11

The Compile Process
In order to create a compiler like Simply KoolB, you first must need to know
how the compile process works. Different compilers will use differently

Explore Further

Other Resources

Other Types of Compilers

Actually, many more categories of compilers exist.
You may want to learn more about these on your
own time. I’ll get you started with a brief description
of several:

• Translator: Translates from one language to
another. For instance, from BASIC to C.

• Byte-code Interpreter: Translates the source
code from English text to a compact form of code
known as byte-code or P-code. This allows the
interpreter to run faster. Examples include the
popular Java

• JIT compiler: Stands for Just-In-Time compiler.
First, a compiler translates a program to a byte-
code. But instead of interpreting this byte-code,
when the program is run, a compiler translates
the byte-code to native computer language just
in time (hence it’s name). Microsoft’s .NET
platform is based on JIT compilers.

Learning About Interpreters

However, if you really want to try your hand at an
interpreter, I suggest you check out Steve’s Let’s
Build A Scripting Engine. He will guide you through
the process of building a BASIC interpreter from the
ground up. You can find his tutorial in the Files
section of the QDepartment
(http://groups.yahoo.com/group/QDepartment/Files)

Chapter 2
Compiler

Tutorial

Page

12

BASIC
Source

Compiler

Assembly
language

Assembler

Object

Linker

Program

Compile Process

Resources

Other

Already Compiled

Figure 2.01

process (often radically different). This approach is not the best nor the
easiest, but many compilers use it. So I will briefly go over it here.

Obviously, computers can’t understand English, or even our programming
languages. Actually, I take that back…to some people it isn’t so obvious:

User: "Hey, can you help me? My program doesn't work."
Consultant: "What is the problem? Are you using Turbo Pascal?"
User: "Yes, the program just blocks the machine."
Consultant: "Well, does it compile?"
User: "I don't know -- it just doesn't run. You see? There's the EXE file. If
you run it, it blocks the machine."
Consultant: "And where is your source, the PAS file??"
User: "I wrote it and renamed it to EXE so it could
run."

The last line makes me smile every time. Maybe
you remember a time when you wondered how a
compiler actually produced a program. To tell the
truth, the compiler normally doesn’t do all the
work. It uses some other programs to help it
along. For instance, a typical compile might look
like Figure 2.01. Blue ovals represent files and
green ovals represent programs.

First, you start off with the BASIC source code.
Since the computer can’t understand English
programming languages, we run it through a
compiler (such as Simply KoolB), which produces
assembly language. Assembly language is just a
text version of computer binary language. If you
have every looked at some, it looks a little cryptic
(OK, a lot cryptic!). However, it is nothing
compared to binary language! That stuff is totally
unreadable. Unless you
have a a strange,
special talent I don’t
know about.

Of course, the
computer can’t run
assembly language
either. So another type
of compiler called an
assembler translates the assembly language into
object code. If you look at object code, you’ll be
scratching your head because object code is not readable by humans. It is
actually very close to native computer language, but not quite.

Actually, this object code represents only the source code you compiled. But
you might want to add other resources (such as pictures, icons, other files) or

Gearing Up
Compiler

Tutorial

Page

13

libraries to your final program. So the final step is a linker, which takes all
these files and combines and links everything together to form your final
program (hey, maybe that’s where the name came from).

The linker also makes sure the program will run on your operating system.
For instance, in Windows, it will link your program to the Windows DLL
(Dynamic Link Libraries), such as

• Kernel32 for core Windows routines like managing memory

• User32 for windows, buttons, and a user interface

• Msvcrt for C library routines

• GDI32 for drawing

On Linux, you will be linking to the standard C libraries.

So now you know how a basic compile process works for Simply KoolB. It
might seem a little confusing at first, but just think of it as a team effort.
Everybody (the compiler, assembler, and linker) works together to make sure
that your BASIC source code gets turned into a program.

What Languages?
In order to build a compiler, you need to choose two programming
languages:

1. To build the compiler in
2. For the compiler to compile

In both cases, you pick the language. That’s one great thing about building
compilers: you get to dabble with any programming language you want. So
go wild!

In the first case, you typically want to pick a language that has been around
for a while and is pretty complete. Many choose some type of C, whether it
be what one friend calls “vanilla” C, C++, or Microsoft’s new C#. Other

Forked Paths Skipping the Assembler and/or Linker

Actually, you can actually skip the assembler by
writing object code directly. However, you will find
out that this will be harder than assembly language.
Now if you like to punish yourself even more, you
can go directly from the BASIC source code to a
program. This would be even harder. The advantage
to this is that you can speed up compile times by 5
to 100 times. This might be something to
experiment with it, as you get more advanced.

Chapter 2
Compiler

Tutorial

Page

14

popular languages include Java (you could write a compiler applet even),
although it is slower than most languages.

Internet languages like Perl or PHP have been used. I’ve heard of specialty
languages like Python being used as well. In fact, I’ve even had some success
with more basic languages like, well, BASIC! Just make sure the language has
good string handling capabilities.

The second language will be the programming language that your compiler
will use. You pretty much a have a free reign in this case. You can clone a
good language that has been abandoned. You can improve upon a good
language. Or you can develop your own programming language. It is totally
up to you!

To appeal to the widest audience, I will use C++ to write KoolB (and Simply
KoolB). I chose C++ mainly because it has long been a standard for
professional programming. I also wanted to learn C++ at the time. However,
I won’t use all the advanced features of C++, so if you’ve been a long-time C
programmer, don’t worry, just brush up on some of the object and classes
terminology. For others that may have been using another language such as
Visual Basic, I mentioned some good tutorials in the last chapter. These will
get you programming in C in no time!

KoolB itself will be a BASIC compiler. Almost everybody remembers dabbling
in either QBasic back in the day or have used Visual BASIC, so you should be
familiar with the BASIC syntax. If not, you can find many free BASIC
compilers or interpreters on the Internet that you can try out.

Gearing Up
Compiler

Tutorial

Page

15

Making a Tool’s Inventory
Before you can get started, you need to install and set up some tools. But
what tools do you need to start to develop compilers and specifically, Simply
KoolB? Obviously, a computer running Windows or Linux would be a start in
the right direction. But how about some others:

• C++ Compiler to write the compiler

• Assembler to assemble the output of the compiler

• Resource Compiler to compile resources into object files

• Linker to link the object files to programs

And, of course, every compiler developer needs the Developer Kit: Aspirin,
Maalox, and Cyanide. I could sure use Aspirin item after hours of debugging!
I never did need the last two though. Keep them handy…you never know.

I’ll examine each component in detail. In most cases, several options will
exist for each tool. For example, you will find many free & good assemblers.

Explore Further Self Compiling Compilers

A funny thing happens when you choose the same
language for both the first and second case. You
wind up with a compiler that can actually compile
itself! This is because the language the compiler is
written in is the same language the compiler
compiles!

So eventually, you will get to a point where you can
develop the compiler with itself. This is called a self-
compliable compiler.

For instance, if you want to make a BASIC compiler,
you can write the compiler in a BASIC dialect that is
as close to the BASIC language you want to make. If
the language isn’t totally compatible, you can still do
it if you are willing to do some re-writing of the
compiler.

This is an interesting concept that is often referred
to as bootstrapping, because you are basically
pulling yourself up by pulling on your bootlaces.

Chapter 2
Compiler

Tutorial

Page

16

I’ll guide you some steps I went through to choose these tools for KoolB and
Simply KoolB. You can use these same steps to find other tools for your own
compiler.

A C++ Compiler
First, you need a compiler to build your compiler with (what a novel idea). For
Simply KoolB, that would be a C++ compiler. For your compiler, that might
be completely different. However, for now, I urge you not only to read along,
but to also go ahead and actually follow along by installing the software and
testing out my KoolB code (who knows, you might find a bug).

Choosing a C++ compiler probably is the easiest decision you need to make.
If you have a commercial suite that you like (Microsoft’s Visual C++,
Metrowork’s CodeWarrier, etc), by all means stick with it.

Otherwise, if you don’t have a C++ compiler and would rather not hear that
sucking sound on your wallet (otherwise known as cash drainage), follow my
lead: use Bloodshed Dev-C++. It is completely free. You can just download it
off the Internet. Of course, being free, you can’t expect it to do all the things
that a commercial package would offer. Surprisingly enough, it does quite
well. I have developed two entire compilers with it and not had any serious
problems.

To cater to the lowest common denominator, I will be describing and using
Dev-C++ in this tutorial. If you have a commercial C++ compiler, I assume
you already know how to use it. If not, I’d suggest installing Dev-C++ and
following along.

If you need help with installing Dev-C++ from http://www.bloodshed.net,
please see Appendix A for a step by step instruction guide.

For all those Linux users out there, I assume that if you are using Linux, you
are already something of a power-user and probably use some esoteric
software like Emacs or vi. So the only subject I will cover will compiling with
GCC via the command line. Other than that, you are on your own!

Gearing Up
Compiler

Tutorial

Page

17

Creating Space for KoolB
Before I guide you through the process of installing and configuring all the
rest of the tools you need, you first need some space to develop your
compiler. I suggest you create a "Compilers" folder under your C drive (or
your /home directory for those using Linux). If you decided to organize your
folders differently, just adjust the instructions in this tutorial to match your
folder locations.

Once you have a root Compilers folder, create some sub-folders to put
everything into. For example, my folders are setup like so:

C: Drive (or /home directory)
- Compilers
 - Tools
 - Resources
 - KoolB
 - Simply KoolB
 - Documentation

Modify things as you see necessary. For instance, a Temp folder might be
nice to have. Organizing things this way helps you to be able to find things
when you need them (which is definitely a plus).

Choosing an Assembler
If you do a quick search on the Internet, you will find quite a few assemblers.
So how do you choose which one to use?

Forked Paths Other Free IDEs

(Integrated Development Environments)

Actually, there are quite a few other free IDEs out
there. You can use a general purpose IDE or a
specialized one. Doing some research on the internet
will yield a good number of C++ editors. A notable
one is MinGW Developer Studio at
http://www.parinya.ca/. It may rival Dev-C++ in the
future (if it remains free).

Of course, you can always use Notepad and the
command line GCC to develop your compiler, but
most of us like something a bit easier.

Chapter 2
Compiler

Tutorial

Page

18

First, I would make a list of requirements and things that you need the
assembler to be able to do. For instance, do you need an assembler that runs
on different operating systems? Or is it important that the assembler run on a
computer with little memory? Sometimes it is very easy to choose because
there is only one choice! In another instance, you might have used a
particular assembler in the past, so it doesn't make sense to relearn another
one.

But what do you do when more than one assembler meets you requirements?
I'll take Simply KoolB as an example. My list of requirements looked like this:

• Must run on both Windows and Linux.

• Must be able to make dynamic link libraries, or shared libraries on
Linux.

• Small size was preferable

That was about it for requirements. So very quickly, I dropped several DOS
assemblers from my list. Assemblers that only ran one OS got crossed off
too. That left basically two assemblers on the list:

• Flat assembler @ http://flatassembler.net/

• Netwide assembler @ http://nasm.sourceforge.net/

So what do you do? Download them and try them out, of course. As you learn
more about each one and as use them, you should be able to find one that
suits your project the best.

In my case, the best choice (in my opinion) was the Netwide assembler. It
was more established and was available on more operating systems than Flat
Assembler. However, this has and is changing, so by the time you read this,
you need to evaluate everything for yourself.

And if you just can't decide, flip a coin!

Once you have settled on an assembler, you need to install it. In the case of
the Netwide Assembler, just download the latest Windows binaries (at the
time of writing the latest is 0.98.38). Put it in your Simply KoolB folder and
extract the zip file. If you don’t have any unzipping software, you can
download 7-zip for free at http://www.7-zip.com. The actual assembler is
named nasmw.exe. The other program, ndisasmw.exe, is a dis-assembler
and can be safely deleted.

While you are at it, download the documentation and store it in your
Resources folder (I’d create a new folder called NASM Docs or something).
This will greatly ease much head pain because you won’t have to bang your
head against the wall as much. You can just read the documentation and
(hopefully) discover what went wrong.

Choosing a Linker
Choosing a linker isn't as difficult as choosing an assembler because you are
more limited. Basically, the linker just combines multiple object codes into a
final program. Since program formats are different on different operating

Gearing Up
Compiler

Tutorial

Page

19

system, you typically need to find a linker for each operating system your
compiler supports.

The linker also links system functions to the right libraries. The operating
system provides many functions so programmers don't have to constantly
rewrite commonly used functions. On Windows, these functions are called
WinAPI calls (short for Windows Application Programming Interface). In
Linux, you can use the stdc libraries (short of the Standard C Library).

For Linux, the standard linker comes as part of the GCC development
package (THE C & C++ compiler for Linux). So in this case, your choice is a
no-brainer.

Windows is a bit more complicated. In looking around, you will see that a lot
of linkers use large LIB (library) files. The linker uses these files to match
system functions with the right DLL. However, this can take up many
megabytes of information (although you can minimize this through the use of
selective libraries and compression).

So when I found a brand new linker named GoLink that didn’t use these LIB
files, I got excited. GoLink was written by an assembly fanatic named Jeremy
Gordon. By actually loading and reading the system DLL files, this linker could
determine which functions to link to what DLLs. That certainly sounded like a
good deal to me, so I definitely used it in KoolB. However, you might fancy
another linker.

To install GoLink, visit http://www.godevtool.com/ and download the latest
version (the latest at the time of writing is .22) to your Simply KoolB folder
and extract the contents of the zip file. Documentation is included with the
linker, so go ahead and move all the files except the GoLink.exe program to
your Resources folder (as you did earlier, create a new folder named GoLink
Docs for these files to go in).

Choosing a Resource Compiler
For Windows, an additional tool is needed: a resource linker. Windows allows
you to include different types of resources in your final application. What
types of resources can you include? Typically, you can include icons, images,
menus, dialogs, and even raw files. To get these resources included in your
program, you have to convert them to special object code using a resource
compiler.

Again, choosing one isn't difficult as there aren't too many available. Since
the author of the linker KoolB uses also developed a resource compiler named
GoRC, it seemed simplest to use that. However you make your own decision.

The install procedure is very much like GoLink. You can download GoRC from
http://www.godevtool.com (the latest version at the time of writing was .81)
to your Simply KoolB folder. Unzip the contents and one more time create a
new folder named GoRC Docs in your Resources folder and move all the files
except GoLink.exe into that folder.

Chapter 2
Compiler

Tutorial

Page

20

Conclusion
Are you ready to start building Simply KoolB? Me too! I’ve showed you a bit
about gearing up and getting ready to start building compilers. I’ve also
covered some of the tools a typical compiler needs to help it along. I now
pronounce you ready!

So what are we going to do in the next chapter? For starters, I will show you
how to build a very plain compiler named Simply KoolB from the ground up.
Completely! It will function just like a real compiler, except of course it will
only accept a handful of commands. But that’s just the appetizer. You will
also learn a little bit about GUI programming I show you how to create a
simple IDE/editor for Simply KoolB. As an added bonus, I’ll show you how to
do some cool stuff like package and set up an installer for our premier
software!

So put on your learning caps and get ready to work next chapter. See you
then!

Gearing Up
Compiler

Tutorial

Page

21

Chapter 3
Simply KoolB

Chapter 3
Compiler

Tutorial

Welcome! So are you ready to learn how to build a
compiler from scratch? Good, because that's
exactly what I'm about to show you how to do. In
the last chapter, we reviewed some compiler
building basics and got ready to get down and get
some coding done. That's precisely what we are
going to do here in this chapter.

In fact, this chapter is almost a mini Compiler
Tutorial in itself. Before we dig into some of the
technicalities of building compilers, I thought it
would be fun to fool around building a very small,
but complete compiler. It won't be as complicated
as KoolB (that'll take the entire book to
complete!), so an apt name is Simply KoolB. I'll
give you a very brief tour of building compilers,
showing you how to to build Simply KoolB in the
process. You'll get familiar with most of the
aspects of a compiler, and have fun doing it!

As an added bonus, I'll be covering not only
creating just the compiler, but many other
important aspects necessary to a successful
compiler project: an IDE for usability, a website for
PR, & an installer for professionalism.

This is definitely a follow-along chapter, so dig out
your C++ compiler (see Appendix A for help
downloading and installing a free one from the
Internet).

Ready? Let's get started!

Page

22

First Stop: Planning
Without a doubt, planning is boring. But it is necessary. Yet that still doesn't
make it any less boring. Since this is a small project, let's keep the
bureaucracy to a bare minimum, OK? The shorter and sweeter, the better.

So what are the essentials a user would want out of a compiler? How about a
list:

• A compiler

• An editor of some sort (a simple Integrated Development Environment or
IDE for short)

• Some documentation

• Some PR via a small website

• A nice installer

Anything less than that and you'd have some disgruntled users. So that's the
game plan for the rest of this chapter. Of course, the compiler and the editor
is the most important, so let's focus on those first.

Creating the Programming Language
Before we go running around nilly-willy coding up anything and everything,
first let's take a second to put down on paper what we want our language to
look like. No doubt it will change as we code, but this gives us a place to
start. As I mentioned earlier, Simply KoolB will be a BASIC sort of language,
as that is a very familiar language (hey, if my 70+ grandfather remembers
learning BASIC, you can tell it's been around).

In BASIC, each line is it's own statement, so all we have to do is figure out
which statements we want. So what are some easy BASIC statements to
build into Simply KoolB? I've thought of seven:

1. Blank lines

2. REM to comment out a line of code

3. CLS to clear the screen

4. PRINT “STRING” to print out a sentence onto the screen

5. RUN “COMMAND” to run an external command via the OS command
interpreter

6. SLEEP # to sleep a certain number of seconds

7. WAIT to pause the program until the user presses ENTER

OK, so I lied. Technically, you could argue that there are only six commands
here as blank lines don't really count. But that's the plan: to create a
compiler so you can program with these seven commands. A sample program
in Simply KoolB might look something like this:

Simply KoolB
Compiler

Tutorial

Page

23

REM A test program for Simply KoolB by Brian C. Becker
REM Part of the Compiler Tutorial (www.BrianCBecker.com)
REM
REM Simply KoolB is your example compiler
REM written in less than 1000 lines of code!

REM Print out a welcome!
PRINT "Welcome to a demo of Simply KoolB by Brian C. Becker!"

REM Wait a couple seconds before clearing the screen
SLEEP 4
CLS
REM Ask the system to list the contents of the current
directory
PRINT "Printing the folders in your C folder:"
RUN "DIR C:\ /a:d /w"

REM Wait until the user hits ENTER
PRINT "Press ENTER to view a goodbye:"
WAIT
REM Clear the screen
CLS
REM Print goodbye
PRINT "Goodbye!"

As you can see, you can't program really cool programs in Simply KoolB, but
it isn't a total waste either – you can create some small programs with it. You
might say that Simply KoolB is a very small “toy” compiler. But when you see
Simply KoolB turn this simple BASIC into a 2 KB Windows executable, you'll
feel proud of of what you accomplished.

Getting Started: Creating the Project
Now that we have an idea of what we're about to do, let's go do it. We'll start
with coding the compiler as that is the most important. So go ahead and
launch Dev-C++ and create a new project by going File -> New -> Project.
Select a Console project, make sure the language is C++, and then name
the project “KoolB”. When prompted where to save the project, save it to
“C:\Compilers\Simply KoolB\Source\Compiler” (or where ever you want). By
saving your source in a separate folder, you can prevent all those *.cpp files
and other programming related files from cluttering up the main directory.

The problem with this is that when you compiler KoolB, the executable gets
placed in that same folder. But that is rather inconvenient, so this is what we
will do. Go to Project -> Project Options and click on the Build Options
tab. In the Executable output directory, type “../../” This tells Dev-C++ to
put KoolB.exe two folders up, or in the “C:\Compilers\Simply KoolB” folder.
That's exactly what we want, so click OK.

Chapter 3
Compiler

Tutorial

Page

24

Dev-C++ already created a very simple C++ program for us. However, we
don't need the first line (#include <iostream>), so delete it. After you do
this, you should have this C++ code:

#include <stdlib.h>

using namespace std;
int main(int argc, char *argv[])
{

system("PAUSE");
return 0;

}
You can compile this by clicking Execute -> Compile. When asked what to
save the file as, just choose the default filename of “main.cpp” and click OK.
If all went well, Dev-C++ should have delivered a KoolB.exe to
“C:\Compilers\Simply KoolB.” If you double-click it, you will notice a black
console box will pop up. Because compilers don't really need a fancy
interface, a console (DOS-like interface) is just fine. In fact, even commercial
compilers like Visual C++ or VB.NET have console compilers. However, they
have very fancy editors and Integrated Development Environments (IDEs).
Not to be outdone, we'll also create an IDE for Simply KoolB later in this
chapter.

Now that we've compiled it, I'll quickly go over it for those a bit new to C++.
Our #include statement includes the part Standard C Library so we can use
it. The using namespace std; line tells the compiler to use the standard
namespace, which includes the Standard C++ Libraries (not to be confused
with the Standard C Libraries).

The main function is where everything all begins – when the program runs, it
automatically runs the main function. I'll talk about argc and argv later, but
for right now, you can just think of these as pieces of information that the
operating system (OS) gives us.

And finally, the system(“pause”); statement pauses the program until you
press a key. This prevents the program from flashing a black console box if
you double click the program from Windows Explorer. And finally, the return
0; statement lets the OS know that the program is done. Returning 0 tells the
OS that everything succeeded.

Not to bore readers familiar with C or C++, I will keep my explanations of the
C/C++ code to a minimium. If you are having a bit of trouble understanding
what is going on here or throughout the rest of this chapter, I encourage you
to check out the links in Chapter 1 that will help you learn C and C++.

Requesting the Filename
Before any compiler can start compiling, it first has to know what to compile.
This means that somehow the user will need to give us the name of the file to
compile. We have two ways of getting this information. One is to use the
command line and the other is to directly request it. To cover all our bases,

Simply KoolB
Compiler

Tutorial

Page

25

we will use both. If the user doesn't pass the filename through the command
line, we'll ask the user for it. So what is the command line? That's the argc
and the argv I was mentioning earlier. When you run a console program, you
usually pass it paramters like:

DIR C:\ /a:d /w
If you typed this in DOS, it would display a list of all all the directories in your
C:\ drive. And the /w would list the directories horizontally instead of just
vertically (wide format).

Likewise, we can pass parameters to KoolB, such as the the filename of the
BASIC source code to compile:

C:\Compilers\Simply KoolB>KoolB "Test.bas"
If you ran KoolB this way, the operating system would automatically pass two
parameters to your main function:

• argc:The number of parameters passed to the program. In this case, argc
would be 2 (KoolB and “Test.bas”)

• argv: An array of strings that contains the actual parameters. Of course,
this is a C (and C++) style array, so you would access “KoolB” with
argv[0] and “"Test.bas"” with argv[1]

So the solution is pretty easy. If we have two parameters, we just assume
the 2nd parameter is the filename. However, if argc is not two, then we will
kindly ask the user for the name of the file.

Forked Paths Such a Fuss About Strings

When it comes to working with strings, we have two
choices. Since compilers do so much with strings,
choosing wisely is rather important. We can use C
style strings or the C++ STL style strings. C style
strings are more low-level and harder to use, but you
have more control over them and you can probably
eek a bit more efficiency out of them. STL strings are
much more similar to strings in other languages, like
BASIC; additionally, they are much easier to use. And
since we will have to be using lots of strings, I
personally think STL strings would be the better
choice. But for those who disagree with me and
prefer null terminated C strings, just wait until we
start mucking with the assembly language. There we
have no choice: we have to use C style strings. So we
get the best of both worlds, right?

Chapter 3
Compiler

Tutorial

Page

26

#include <stdlib.h>
#include <iostream>
#include <stdlib.h>
#include <string>

using namespace std;
// Global Variables for use in Simply KoolB
string FileName;

// General functions
void RequestFile();
int main(int argc, char *argv[])
{

// Print welcome
cout << "Welcome to Simply KoolB by Brian C. Becker" << endl;
cout << "Written for the Compiler Tutorial (www.BrianCBecker.com)."
<< endl << endl;

// Check for an existing filename
if (argc != 2)
{

RequestFile();
}
else
{

FileName = argv[1];
}

system("PAUSE");
return 0;

}

void RequestFile()
{

char Temp[1024];
// Ask the user for the name of the file to compile
cout << "Please enter the file to compile: ";
cin.getline(Temp, 1024);
FileName = Temp;

cout << endl << endl;
}

Simply KoolB
Compiler

Tutorial

Page

27

Installing Dev-C++
Right now, I’ll show you how to download and install Dev-C++. If you already
have a C++ compiler setup (whether it be Dev-C++ or a commercial suite),
feel free to skip this section. Otherwise, make sure you are on a Windows
computer with an Internet connection.

First, download the latest version of Dev-C++ (version 5 beta 8 or 4.9.8.0 at
the time of writing) from http://www.bloodshed.net. The full download
includes both the C++ IDE (editor) and the C++ compiler. Run the setup file:

Click OK to continue to the main
installation. Of course, you want to
read the license agreement, so
spend at least 15 minutes
scrutinizing it closely (like that
would ever happen!). Then click I
Agree (to work for Bill Gates for 5
lifetime sentences).

The next page
allows you to
select what you
want to install.
Unless you
absolutely don’t
have the space,
I suggestion you
install a typical
set of
components
(about 50 MB).

Appendix A
Compiler

Tutorial

Page

28

Click Next >
and select a
folder to install
everything to
(you can just
accept the
default if you
want).

Click Install
and sit back
and relax (or
go grab a
quick snack)
as Dev-C++
installs for
you.

After several minutes, you are
asked if you want to set up Dev-
C++ for all users on the computer.
I suggest you answer Yes.

Installation will
then complete,
so click Close
(say that 10
times really
fast!).

Appendix A
Compiler

Tutorial

Page

29

Dev-C++ will launch:

Now you are getting somewhere! Next you will be presented with first time
configuration dialog.

Basically, it says that this
is a beta release that
hasn’t been 100% tested
and may crash. By the
time you read this,
development might have
stabilized and version 5
might be out. If not, click
OK.

Now choose your language. If you want Dev-C++ to take on the look of
Microsoft Office XP, click the ‘Use XP Theme’ (personally, I think it is nice).
You can also choose a theme if you want. Click OK.

Appendix A
Compiler

Tutorial

Page

30

Finally! Dev-C++ is installed:

Click Close to close the Tip of the Day (disable it by checking Don’t display
tips at startup).

If you want, there are several options
that will make your life a lot easier.
First, go to Tools -> Editor Options:

Simply KoolB
Compiler

Tutorial

Page

31

That will bring
up a tabbed
dialog where
you can
change various
options related
to the text
editor.

Check the Use
Tab
Character to
enable tabs.

Then move to
the Display
tab.

Check the Line
Numbers
options if you
would like to
see line
numbers. I
always use
them because
I just like to
know what line
I’m on.

Chapter 3
Compiler

Tutorial

Page

32

Then move onto the Syntax tab.

Select a Color
Speed
Setting. I use
Classic, but
some of them
are pretty cool
as well. Finally,
click OK.

That’s it! Dev-C++ is now ready for use. Of course, there is a lot more for
you to explore on your own.

Simply KoolB
Compiler

Tutorial

Page

33

