
SVM Incremental Learning, Adaptation and Optimization

Christopher P. Diehl
Applied Physics Laboratory
Johns Hopkins University

Laurel, MD 20723
Chris.Diehl@jhuapl.edu

Gert Cauwenberghs
ECE Department

Johns Hopkins University
Baltimore, MD 21218

gert@jhu.edu

Abstract— The objective of machine learning is to identify a
model that yields good generalization performance. This involves
repeatedly selecting a hypothesis class, searching the hypothesis
class by minimizing a given objective function over the model’s
parameter space, and evaluating the generalization performance
of the resulting model. This search can be computationally
intensive as training data continuously arrives, or as one needs
to tune hyperparameters in the hypothesis class and the objective
function. In this paper, we present a framework for exact
incremental learning and adaptation of support vector machine
(SVM) classifiers. The approach is general and allows one to learn
and unlearn individual or multiple examples, adapt the current
SVM to changes in regularization and kernel parameters, and
evaluate generalization performance through exact leave-one-out
error estimation.

I. I NTRODUCTION

SVM techniques for classification and regression provide
powerful tools for learning models that generalize well even
in sparse, high dimensional settings. Their success can be
attributed to Vapnik’s seminal work in statistical learning
theory [15] which provided key insights into the factors
affecting generalization performance. SVM learning can be
viewed as a practical implementation of Vapnik’sstructural
risk minimizationinduction principle which involves searching
over hypothesis classes of varying capacity to find the model
with the best generalization performance.

SVM classifiers of the formf(x) = w ·Φ(x)+b are learned
from the data{(xi, yi) ∈ RI m × {−1, 1} ∀ i ∈ {1, . . . , N}}
by minimizing

min
w,b,ξ

1
2
‖w‖2 + C

N∑
i=1

ξp
i (1)

for p ∈ {1, 2} subject to the constraints

yi (w · Φ(xi) + b) ≥ 1− ξi, ξi ≥ 0 ∀ i ∈ {1, . . . , N}. (2)

We will focus on thep = 1 case which is generally preferred
due to the improved robustness to outliers offered by the hinge
loss (p = 1) over the quadratic loss (p = 2). To simplify
matters when learning nonlinear SVMs, this quadratic program
is typically expressed in its dual form

min
0≤αi≤C

W =
1
2

N∑
i,j=1

αiQijαj −
N∑

i=1

αi + b
N∑

i=1

yiαi (3)

with Lagrange multiplier (and offset)b andQij = yiyjΦ(xi) ·
Φ(xj). The resulting dual form of the SVM is thenf(x) =

∑N
i=1 yiαiΦ(xi) ·Φ(x)+b. Given the nonlinearly transformed

(training and test) examplesΦ(x) appear only in dot product
termsΦ(x) · Φ(y), we can employ a positive definite kernel
functionK(x,y) = Φ(x)·Φ(y) to implicitly map into a higher
(possibly infinite) dimensional feature space and compute the
dot product.

The search for a SVM that generalizes well involves repeat-
edly selecting a kernel function and regularization parameter
C, solving the quadratic program, and evaluating generaliza-
tion performance. Typically a parameterized kernel function
is utilized that varies smoothly with respect to one or more
continuous parametersσ. Therefore the search task becomes
one of finding a set of parameters(C,σ) that maximize
generalization performance.

As we incrementally vary the regularization and kernel
parameters, we expect that the resulting SVM will not change
dramatically. To minimize the computational burden of this
search, we require a process that utilizes the current SVM
solution to simplify the solution of the next quadratic program
in the search. As new data becomes available, we would also
like to integrate these examples into the quadratic program
and modify (C,σ) as necessary. This is a critical capability
for online, active and incremental batch learning scenarios.

Incremental techniques have been developed to facilitate
batch SVM learning over very large data sets, and have
found widespread use in the SVM community,e.g. [12], [13],
[8], [9]. Incremental SVM learning is particularly attractive
in an on-line setting, and for active learning [3]. Most of
these techniques are approximate and require several passes
through the data to reach convergence. A procedure for ex-
act “adiabatic” incremental learning of SVM classifiers, in
a single pass through the data, was introduced in [4] and
extended to SVM regression [11] and larger-set increments [7].
Investigations in incremental learning have largely focused
on on-line learning as opposed to the larger model selection
problem. Dynamic kernel adaptation is presented in [6], and
approximate procedures for model selection, using leave-one-
out (LOO) approximations and bounds, are given in [10]
and [5]. The incremental SVM learning procedure can be
adiabatically reverted to perform decremental unlearning, for
exact LOO-based model selection [4].

In this paper, we extend the incremental SVM learning
paradigm of [4] to a general framework for incremental
learning, adaptation and optimization that allows one to learn
and unlearn individual or multiple examples, adapt the current

SVM to changes in regularization and kernel parameters, and
evaluate generalization performance through exact leave-one-
out error estimation. In the following section, we begin by
addressing the problem of learning the SVM solution forN +
M training examples given the SVM solution forN training
examples and a new batch ofM training examples where
M ≥ 1. Then we illustrate how the basic approach to this
problem can be utilized to achieve our remaining objectives. In
the final section, we examine some initial experimental results
demonstrating the potential of this approach.

II. I NCREMENTAL/DECREMENTAL LEARNING

A. Karush-Kuhn-Tucker Conditions

The Karush-Kuhn-Tucker(KKT) conditions uniquely de-
fine the solution of dual parameters{α, b} minimizing the
form (3):

gi =
∂W

∂αi
=

N∑
j=1

Qijαj + yib− 1

 > 0 αi = 0
= 0 0 ≤ αi ≤ C
< 0 αi = C

(4)

h =
∂W

∂b
=

N∑
j=1

yjαj ≡ 0 (5)

Based on the partial derivativesgi, the training examples can
be partitioned into three different categories: the setS of
margin support vectorson the margin(gi = 0), the setE
of error support vectorsviolating the margin(gi < 0), and
the remaining setR of reserve vectorsexceeding the margin
(gi > 0). During incremental learning, new training examples
with gi > 0 are assigned directly toR, as they by construction
do not enter the solution. All other new examples are initially
elements of a specially designated setU of unlearned vectors,
and eventually become margin or error support vectors.

B. Adiabatic Increments

As we increment the unlearned example(s) into the solution,
the goal will be to simultaneously preserve the KKT conditions
for all previously seen training data. The KKT conditions
are maintained by varying the margin vector coefficients in
response to the perturbation imparted by the incremented
new coefficient(s). In the process, elements of the different
categories may change state, so that the incremental learning
proceeds through a sequence of “adiabatic” steps, of amplitude
determined by “bookkeeping” of category membership as
given by conditions (4).

Prior to a given perturbation of the SVM solution, the partial
derivatives with respect to{αi, b : ∀ i ∈ S} equal

gi =
∑

j

Qijαj + yib− 1 = 0 ∀ i ∈ S (6)

h =
∑

j

yjαj = 0. (7)

Following the perturbation, the partial derivatives become

gi =
∑

j

Qijαj +
∑
k∈S

Qik∆αk (8)

+
∑
l∈U

Qil∆αl + yi(b + ∆b)− 1 = 0 ∀ i ∈ S

h =
∑

j

yjαj +
∑
k∈S

yk∆αk +
∑
l∈U

yl∆αl = 0. (9)

Expressing these conditions differentially, we obtain

∆gi =
∑
k∈S

Qik∆αk +
∑
l∈U

Qil∆αl + yi∆b = 0 ∀ i ∈ S (10)

∆h =
∑
k∈S

yk∆αk +
∑
l∈U

yl∆αl = 0. (11)

For a given perturbation of the unlearned vector coefficients
{∆αl : ∀ l ∈ U}, our objective is to determine the necessary
changes in the margin vector coefficients{∆αk : ∀ k ∈ S}
and the bias∆b that preserve the KKT conditions on all
learned data. The overall perturbation process is controlled
by a perturbation parameterp which varies from 0 to 1 as
the SVM solution is perturbed from its initial “unlearned” to
final “learned” result. Atp = 0, the solution initializes to the
previous solution, prior to presentation of the new examples.
During each perturbation, the perturbation parameterp is
incremented by the smallest value∆pmin which leads to a
category change for at least one example. Byp = 1, all
unlearned vectors have reached either of the three categories
S, E or R, and both new and old data satisfy the KKT
conditions (4) and (5).

The adiabatic increments∆αi’s are expressed as the product
of ∆p and the correspondingcoefficient sensitivities. Let
∆αk = βk∆p (k ∈ S),∆αl = λl∆p (l ∈ U), and ∆b =
β∆p. Substituting these expressions into (10) and (11) and
dividing through by∆p yields the differential KKT conditions
expressed in terms of the coefficient sensitivities

γi =
∆gi

∆p
=

∑
k∈S

Qikβk +
∑
l∈U

Qilλl + yiβ = 0 ∀ i ∈ S (12)

∆h

∆p
=

∑
k∈S

ykβk +
∑
l∈U

ylλl = 0 . (13)

In principle, theperturbation coefficientsλl can be freely
chosen. Given the unlearned vector coefficients will change at
most byC before the unlearned examples change categories,
a natural choice is{λl = C : ∀ l ∈ U}. The corresponding
coefficient sensitivities{βk, β : ∀ k ∈ S} are obtained by
solving this system of equations. Once the coefficient sensi-
tivities are known, we can compute themargin sensitivitiesγi

for the error, reserve and unlearned vectors.
Both {βk, β : ∀ k ∈ S} and {γi : ∀ i ∈ E ,R,U} are

necessary for computing∆pmin. Table I lists the possible cat-
egory changes that can occur during incremental/decremental
learning. The smallest∆p among applicable conditions deter-
mines the category change and perturbation step∆pmin. To
determine∆pmin, we first compute the minimum∆pc

min for
each set of examples that can undergo a given category change

TABLE I

SUMMARY OF BOOKKEEPINGCONDITIONS

Common
Initial Category New Category ∆p Condition

Margin Reserve −αi
βi

βi < 0

Error Margin −gi
γi

γi > 0

Reserve Margin −gi
γi

γi < 0

Incremental/Decremental Learning

Margin Error C−αi
βi

βi > 0

Unlearned (gi < 0) Margin −gi
γi

γi > 0

Unlearned (gi < 0) Error C−αi
λi

λi > 0

Regularization Parameter Perturbation

Margin Error Ct−αi
βi−∆C

βi > ∆C

Kernel Parameter Perturbation

Margin Error C−αi
βi

βi > 0

Unlearned (gi 6= 0) Margin −gi
γi

γigi < 0

Unlearned (gi > 0) Reserve −αi
λi

λi < 0

Unlearned (gi < 0) Error C−αi
λi

λi > 0

c. Then∆pmin = min
c∈C

∆pc
min whereC is the set of possible

category changes.
Once∆pmin is known, we update the coefficients for the

margin vectors(αk → αk + βk∆p : ∀ k ∈ S) and unlearned
vectors(αl → αl +λl∆p : ∀ l ∈ U). After noting the category
change, we recompute the coefficient and margin sensitivities
and determine the next perturbation. This process repeats until
p = 1.1

C. The Initial Perturbation

Special consideration must be given to the case where
no SVM solution initially exists. In this scenario, all of the
training examples are initially unlearned and{αl = 0, b =
0 : ∀ l ∈ U}. This implies the equality condition (5) is
immediately satisfied. If we begin incrementing the unlearned
vector coefficients, we will immediately violate this condition
unless

∑
k∈U yk = 0 so that

h =
∑

j

yjαj + C∆p
∑
k∈U

yk = 0. (14)

Most often, there will not be an equal number of examples
from each class, and the equality condition cannot generally
be preserved.

The margin vector coefficients allow the preservation of the
equality condition when an initial SVM solution is given. The
margin vectors provide the degree of freedom to counterbal-
ance the changes in the unlearned vector coefficients. One
way to preserve condition (5) is to bootstrap the process by
selecting one example from each class and learning an initial
SVM. This is accomplished by first selecting one example
and modifying only the bias so that this example is a margin

1Note that it is possible for the unlearned vector set to become empty, and
the incremental perturbation to terminate, whenp < 1.

vector. Then the second example from the opposite class can
be successfully incremented into the solution.2

Another option is to simply proceed with the initial pertur-
bation and disregard condition (5) until the margin vector set
is no longer empty. Beyond that point, we can incrementally
correct the violation in a manner that guarantees the condition
will be satisfied once the perturbation process is complete. We
will explore this approach in detail below when addressing the
problem of adapting the SVM solution to changes in kernel
parameters.

D. Solving for the Coefficient Sensitivities{βk, β}

To obtain the coefficient sensitivities{βk, β : ∀ k ∈ S}, we
must solve the system of equations represented by (12) and
(13). Expressed in matrix-vector form, we have

Qβ = −
∑
l∈U

λlvl (15)

where

β =


β

βs1

...
βsn

 , vl =


yl

Qs1l

...
Qsnl

 , (16)

n = |S| and

Q =


0 ys1 . . . ysn

ys1 Qs1s1 . . . Qs1sn

...
...

...
...

ysn
Qsns1 . . . Qsnsn

 . (17)

We require the inverseR = Q−1 to compute the sensitivities

β = −
∑
l∈U

λlRvl. (18)

As the perturbation process proceeds, we can easily adaptR
as examples are added and removed from the margin vector
setS [4]. When adding an example toS, R expands as

R←−

 R

0
...
0

0 . . . 0 0

 +
1

γ
sn+1
sn+1

[
βsn+1

1

] [
βsn+1

1

]T

(19)
where βsn+1

= −Rvsn+1 and γ
sn+1
sn+1 = Qsn+1sn+1 +

vT
sn+1

βsn+1
. When removing a margin vectork from S, R

contracts as

Rij ←− Rij −
RikRkj

Rkk
∀ i, j ∈ S ∪ {0}; i, j 6= k (20)

where index 0 refers to theb term.

2There is the potential for a degenerate solution to arise if the regularization
parameterC is set too low such that both examples become error vectors [2].
If this does occur, the problem can be easily corrected by increasingC.

E. Decremental Learning and Cross-Validation

The adiabatic increment process is fully reversible [4].
Decremental “unlearning” provides the flexibility to perform
leave-one-out error estimation (or more generallyk-fold cross-
validation). This is accomplished simply by “unlearning” the
relevant example(s) and computing the corresponding class
label(s) using the resulting SVM.

When unlearning a subsetU of the training examples, our
objective is to decrement the coefficients{αl : ∀ l ∈ U} to 0,
while retaining the KKT conditions on all other data. Before
we begin the perturbation process, if any of the examples inU
are currently margin vectors, we must first contract the inverse
R so that the corresponding KKT conditions of the unlearned
vectors are no longer enforced. Once this is complete, we
compute the coefficient sensitivities{βk, β : ∀ k ∈ S} and
margin sensitivities{γi : ∀i ∈ E ,R} using equations (18) and
(12) as before. In the decremental scenario, the coefficient
sensitivities for the examples inU equal{λl = −αl : ∀ l ∈
U}. Note that when determining∆pmin for each perturbation,
we only need to track category changes for the remaining
margin, error and reserve vectors.

III. PARAMETER OPTIMIZATION

The key condition that enables incremental learning when
using the hinge loss is the fact that the partial derivativesgi

and h are linear functions of the parameters{αi, b}. This
allows us to adiabatically perturb the SVM solution in the
manner introduced in the previous section. In general, the
SVM solution can be perturbed adiabatically with respect to
any parameters that are linearly related to the partial deriva-
tives gi and h. This implies for example that the SVM can
be perturbed adiabatically with respect to the regularization
parameterC [14]. This also suggests that in general the SVM
cannot be perturbed adiabatically with respect to nonlinear
parameters in the kernel, for instanceσ in a radial basis
Gaussian kernel. Although this would seem to limit the utility
of the algorithm for general parameter optimization, we will
propose a slight modification to the overall strategy that allows
us to address the nonlinear case as well.

A. Regularization Parameter Perturbation

Perturbing the SVM with respect to the regularization
parameterC amounts to simply incrementing or decrementing
the error vector coefficients{αl : ∀ l ∈ E}. By replacing the
unlearned vector setU with the error vector setE in equations
(8) through (13), we obtain the differential KKT conditions

γi =
∆gi

∆p
=

∑
k∈S

Qikβk +
∑
l∈E

Qilλl + yiβ = 0 ∀ i ∈ S (21)

∆h

∆p
=

∑
k∈S

ykβk +
∑
l∈E

ylλl = 0. (22)

This implies the coefficient sensitivities{βk, β : ∀ k ∈ S}
equal

β = −
∑
l∈E

λlRvl. (23)

TABLE II

CATEGORY REASSIGNMENT FOLLOWING KERNEL PARAMETER CHANGE

Previous Example Category gi > 0 gi < 0

Reserve Vector (αi = 0) Reserve Unlearned
Margin Vector (0 ≤ αi ≤ C) Unlearned Unlearned

Error Vector (αi = C) Unlearned Error

Given the error vector coefficients will change at most by
∆C = Cnew−C, a natural choice for perturbation coefficients
is now {λl = ∆C : ∀ l ∈ E}.

The only subtle difference in the perturbation process arises
when computing the∆p required for a margin vector to
become an error vector. Unlike in incremental learning where
C is fixed, C varies during the perturbations:

Ct+1 = Ct + ∆C∆p, C0 = C. (24)

If a margin vector becomes an error vector for some positive
∆p, the following must hold:

αsk
+ βsk

∆p = Ct + ∆C∆p. (25)

This implies

∆p =
Ct − αsk

βsk
−∆C

(26)

as indicated in table I.

B. Kernel Parameter Perturbation

To perturb the SVM solution as we vary the kernel param-
eters requires a slightly different strategy. Unlike incremental
learning and regularization parameter perturbation, we cannot
in general define a method for adiabatically perturbing the
SVM solution while transforming the kernel. Therefore our
approach will involve first modifying the kernel parameters
and then incrementally correcting the previous solution until
the KKT conditions are satisfied for the new kernel parameter
settings.

Once the kernel parameters are changed, we begin by
recomputing the partial derivativesgi for the margin, error
and reserve vectors. Then we reclassify the category of each
example as necessary. Table II presents the mapping from
old to new category as a function ofgi. For the reserve
and error vectors with partial derivatives that do not change
sign, no category change occurs. Theα’s for all of the other
examples will need to be modified; therefore these examples
are reclassified as unlearned.

During each perturbation when there are no margin vectors,
only the unlearned vector coefficients change(αi → αi +
λi∆p : ∀ i ∈ U). Once there is at least one margin vector,
we modify the margin vector coefficients{αi : ∀ i ∈ S} and
the biasb in a manner that preserves the KKT conditions for
the current margin vector setS. The perturbation coefficients
λi for the unlearned vectorsU are now defined as

λi =
{
−αi gi > 0
C − αi gi < 0 . (27)

For all examples inU with gi > 0, αi must be decremented
until the example either becomes a margin vector (gi = 0) or

reserve vector (αi = 0). For examples withgi < 0, αi must be
incremented until the example either becomes a margin vector
or error vector (αi = C).

Before the perturbation process begins, the KKT condition

h =
∑

j

yjαj = 0 (28)

still holds. In order to preserve this condition, the constraint∑
j∈U

yjλj = 0 (29)

must be satisfied. In general, this constraint cannot always be
satisfied, even by rescaling the perturbation coefficients in such
a way that the signs of the coefficients are preserved. Therefore
during the first perturbation we will intentionally violate the
KKT condition and correct the violation incrementally once
the margin vector set is no longer empty. We shall see next
that this is easily resolved.

Prior to a given perturbation of the SVM solution when
|S| > 0, the partial derivatives with respect to{αi, b : ∀ i ∈
S} equal

gi =
∑

j

Qijαj + yib− 1 = 0 ∀ i ∈ S (30)

h =
∑

j

yjαj = ε (31)

Following the perturbation, the partial derivatives equal

gi =
∑

j

Qijαj +
∑
k∈S

Qikβk∆p

+
∑
l∈U

Qilλl∆p + yi(b + β∆p)− 1 = 0 ∀ i ∈ S (32)

h =
∑

j

yjαj +
∑
k∈S

ykβk∆p +
∑
l∈U

ylλl∆p = ε + ρ∆p (33)

Before we can solve for the coefficient sensitivities, we must
first define the constraint sensitivityρ = ∆h

∆p . Given we want
h = 0 when the perturbation process is complete (whenp =
1), ∆h = −ε when∆p = 1− p. Thereforeρ = −ε

1−p .
Differencing the equations forgi andh and dividing through

by ∆p leads to

γi =
∆gi

∆p
=

∑
k∈S

Qikβk +
∑
l∈U

Qilλl + yiβ = 0 ∀ i ∈ S (34)

∆h

∆p
=

∑
k∈S

ykβk +
∑
l∈U

ylλl = ρ. (35)

Expressing this system of equations in matrix-vector form, we
obtain

Qβ = ρe1 −
∑
l∈U

λlvl (36)

where e1 = [1 0 . . . 0]T ∈ RI |S|+1. This implies the
coefficient sensitivities{βk, β : ∀ k ∈ S} equal

β = ρRe1 −
∑
l∈U

λlRvl. (37)

Comparing equation (18) with (37), we see that one additional
term has been introduced to forceh→ 0.

With the equations for the coefficient and margin sensitivi-
ties in hand, the perturbation process proceeds as before. Table
I lists the possible category changes that must be tracked dur-
ing the perturbation process. Note that the constraint sensitivity
ρ in equation (37) must be updated prior to each perturbation
to ensure thath = 0 when the final perturbation is complete.

IV. EXPERIMENTAL RESULTS

In order to assess the benefits offered by the incremental
framework, we conducted two experiments using the Pima
Indians dataset from the UCI machine learning repository [1].
Using an RBF kernelK(x, y) = exp

(
− ‖x − y‖2

σ2

)
, we first

fixed the kernel width and varied (increased or decreased)
the regularization parameter over the range indicated in table
III. Then we fixed the regularization parameter and varied
(decreased or increased) the kernel width over the range
indicated in table IV. Both tables list the number of float-
ing point operations3, kernel evaluations and perturbations
required for both full retraining and the incremental approach.
Note that the center row in each table does not list statistics
for the incremental approach because the corresponding fully
(re)trained SVM serves as the initial SVM for the series of
perturbations. Full retraining corresponds to an incremental
learning session over the entire training data, starting from
the empty set.

Beginning with table III, we find that as the regularization
parameter is increased, the computational savings offered by
the incremental approach increases. There are two components
to the overall cost in terms of floating point operations for
the incremental approach that are worth noting. First, asC
increases, the number of error vectors decreases. This leads to
a steady decline in the number of kernel evaluations required.
At the same time, the number of margin vectors is increasing
which adds to the expense of the repeated computation of the
margin sensitivitiesγi and leads to increases in the overall
cost.

Examining table IV, we see that as the kernel width is de-
creased, the computational savings offered by the incremental
approach decreases. This is due to the increasing number of
margin vectors that result. Unlike in regularization parameter
perturbation, cached rows of the kernel matrix do not provide
any benefit when modifying the kernel width. We must instead
recompute the needed rows of the kernel matrix as is the
case in full retraining. Therefore as the relative fraction of
unlearned vectors that result in margin vectors increases,
the computational cost of the incremental approach becomes
comparable to that of full retraining.

V. CONCLUSIONS

In this paper, we have presented a framework for incre-
mental learning and adaptation of support vector machine

3The number of floating point operations was determined using theflops
command in MATLAB.

TABLE III

COMPARISON OF THE COSTS OF FULL RETRAINING WITH THE INCREMENTAL APPROACH FOR FIXEDσ2 AND VARYING C

Pima Indians,σ2 = 4

Floating Point Operations(x108) Kernel Evaluations(x106) Perturbations

C |S| |E| |R| Full Retraining Incremental Full Retraining Incremental Full Retraining Incremental

0.354 72 432 264 1.23 0.200 1.190 0.320 1061 58
0.5 97 401 270 1.46 0.250 1.200 0.296 1086 67

0.707 121 364 283 1.71 0.255 1.200 0.263 1119 60
1.0 150 328 290 1.12 - 0.965 - 825 -
1.41 188 284 296 2.37 0.403 1.210 0.294 1164 73
2.0 223 244 301 1.82 0.430 1.040 0.256 944 64
2.83 247 212 309 3.05 0.417 1.220 0.217 1198 53

TABLE IV

COMPARISON OF THE COSTS OF FULL RETRAINING WITH THE INCREMENTAL APPROACH FOR FIXEDC AND VARYING σ2

Pima Indians,C = 1

Initial Floating Point Operations(x108) Kernel Evaluations(x106) Perturbations
σ2 |S| |E| |R| |U| Full Retraining Incremental Full Retraining Incremental Full Retraining Incremental

1.41 347 260 161 500 2.690 2.94 1.004 1.000 730 721
2.0 269 286 213 483 1.980 2.07 0.991 0.975 774 740
2.83 204 299 265 442 1.520 1.49 0.981 0.944 813 760
4.0 150 328 290 - 1.120 - 0.965 - 825 -
5.66 109 341 318 205 0.852 0.488 0.952 0.533 832 286
8.0 81 356 331 154 0.700 0.347 0.943 0.479 836 224
11.3 51 370 347 120 0.602 0.267 0.924 0.446 818 197

classifiers that aims to simplify the model selection task by
perturbing the SVM solution as the regularization and kernel
parameters are adjusted. Empirical results on UCI benchmark
data suggest regularization parameter perturbation can offer
significant computational savings, whereas the computational
benefits of kernel parameter perturbation may be more limited.
In general, the benefits of incremental adaptation are most
substantial for small perturbation of kernel or regularization
parameters, as one may expect in each optimization step for
model selection.

Acknowledgments

C. Diehl was supported by the FY03 JHU/APL IR&D
program for Applied Mathematics. G. Cauwenberghs was
supported by grant IIS-0209289 from the National Science
Foundation and grant N00014-99-1-0612 from the Office of
Naval Research.

REFERENCES

[1] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1998. University of California, Irvine, Dept. of Information and Com-
puter Sciences, http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[2] Chris J. C. Burges and David J. Crisp. Uniqueness of the SVM solution.
In S. A. Solla, T. K. Leen, and K.-R. M̈uller, editors,Advances in Neural
Information Processing Systems 12. Morgan Kaufmann, 2000.

[3] Colin Campbell, Nello Cristianini, and Alex Smola. Query learning
with large margin classifiers. InProceedings, 17th International Con-
ference on Machine Learning, pages 111–118. Morgan Kaufmann, San
Francisco, CA, 2000.

[4] Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental
support vector machine learning. InAdvances in Neural Information
Processing Systems 13. MIT Press, 2001.

[5] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing
multiple parameters for support vector machines. InMachine Learning.
Kluwer Academic, 2002.

[6] N. Cristianini, C. Campbell, and J. Shawe-Taylor. Dynamically adapting
kernels in support vector machines. InNeuroCOLT Technical Report
NC-TR-98-017. Royal Holloway College, University of London, UK,
1998.

[7] Shai Fine and Katya Scheinberg. Incremental learning and selective
sampling via parametric optimization framework for SVM. InAdvances
in Neural Information Processing Systems 14. MIT Press, 2002.

[8] T.-T. Friess, N. Cristianini, and C. Campbell. The kernel adatron
algorithm: A fast and simple learning procedure for support vector
machines. InProceedings, 15th International Conference on Machine
Learning. Morgan Kaufmann, 1998.

[9] Thorsten Joachims. Making large-scale SVM learning practical. In
B. Scḧolkopf, C. Burges, and A. Smola, editors,Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1999.

[10] J.-H. Lee and C.-J. Lin. Automatic model selection for support vector
machines. http://www.csie.ntu.edu.tw/˜ cjlin/papers/ modelselect.ps.gz,
2000.

[11] M. Martin. On-line support vector machines for function approximation.
http://www.lsi.upc.es/dept/techreps/html/R02-11.html, 2002.

[12] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm
for support vector machines. InProceedings, 1997 IEEE Workshop on
Neural Networks for Signal Processing, pages 276–285, 1997.

[13] J.C. Platt. Fast training of support vector machines using sequential
minimum optimization. InAdvances in Kernel Methods– Support Vector
Learning, pages 185–208. Cambridge MA: MIT Press, 1998.

[14] M. Pontil and A. Verri. Properties of support vector machines. InNeural
Computation, volume 10, pages 955–974. MIT Press, 1997.

[15] Vladimir V. Vapnik. Statistical Learning Theory. Springer-Verlag New
York, 1998.

