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Abstract— The objective of machine learning is to identify a Zf{: 1Yo ®(x;) - ®(x) +b. Given the nonlinearly transformed
model that yields good generalization performance. This involves (training and test) exampleB(x) appear only in dot product
repeatedly selecting a hypothesis class, searching the hypothesqerms@(x) - ®(y), we can employ a positive definite kernel

class by minimizing a given objective function over the model’s . o . L . .
parameter space, and evaluating the generalization performance function K (x,y) = ®(x)-®(y) to implicitly map into a higher

of the resulting model. This search can be computationally (POSsibly infinite) dimensional feature space and compute the
intensive as training data continuously arrives, or as one needs dot product.

to tune hyperparameters in the hypothesis class and the objective  The search for a SVM that generalizes well involves repeat-
function. In this paper, we present a framework for exact gq)y selecting a kernel function and regularization parameter

incremental learning and adaptation of support vector machine C vina th drati d luati i
(SVM) classifiers. The approach is general and allows one to learn solving the quadratic program, and evalualing generaliza-

and unlearn individual or multiple examples, adapt the current tion performance. Typically a parameterized kernel function
SVM to changes in regularization and kernel parameters, and is utilized that varies smoothly with respect to one or more
evaluate generalization performance through exact leave-one-out continuous parametees. Therefore the search task becomes
error estimation. one of finding a set of parametef&’, o) that maximize

I. INTRODUCTION generalization performance.
As we incrementally vary the regularization and kernel

tul to0ls for | . dels that ? " arameters, we expect that the resulting SVM will not change
powertul tools for learning models that generalizé Well eve amatically. To minimize the computational burden of this

in sparse, high dimensional settings. Their success can %\rch, we require a process that utilizes the current SVM

attributed to Va_lpmks gemmal wo.rk.m sta}tlstlcal Iearnln%olution to simplify the solution of the next quadratic program
theory [15] Whlc.h prowded key insights into the factor§n the search. As new data becomes available, we would also
affecting generalization performance. SVM learning can tfﬁe to integrate these examples into the quadratic program

\/_lell/veq as a tpracgcalt_lmplgmgnltatmr? (r)]f_VapInlls’Hucturﬁ_l and modify (C, o) as necessary. This is a critical capability
rsk minimizationnduction principie which involves searching o[ online, active and incremental batch learning scenarios.

over hypothesis cIas;es .Of varying capacity to find the mode Incremental techniques have been developed to facilitate
with the best_ generahzaﬂon performance. batch SVM learning over very large data sets, and have
SVM classifiers of the fornf (x) = W'q)()(,)+b are learned ¢, g widespread use in the SVM communityy.[12], [13],
Lrom _th_e qata{(xi’yi) €R™x{-L1}Vie{l,....N}} [8], [9]. Incremental SVM learning is particularly attractive
y minimizing in an on-line setting, and for active learning [3]. Most of

SVM techniques for classification and regression provi

1 ) N ) these techniques are approximate and require several passes
min A +CY & (1) through the data to reach convergence. A procedure for ex-
o i=1 act “adiabatic” incremental learning of SVM classifiers, in
for p € {1,2} subject to the constraints a single pass through the data, was introduced in [4] and

extended to SVM regression [11] and larger-set increments [7].

yi(w-®(xi)+b) 21-&, &=0vVie{l,...,N}. (2 Investigations in incremental learning have largely focused
We will focus on thep = 1 case which is generally preferred® On-line learning as opposed to the larger model selection
due to the improved robustness to outliers offered by the hingPPlem. Dynamic kernel adaptation is presented in [6], and
loss ¢ = 1) over the quadratic lossp(= 2). To simplify approximate procedures for model selection, using leave-one-

matters when learning nonlinear SVMs, this quadratic prografHt (LOO) approximations and bounds, are given in [10]
is typically expressed in its dual form and [5]. The incremental SVM learning procedure can be

adiabatically reverted to perform decremental unlearning, for
) 1 N N exact LOO-based model selection [4].
0<12§r<10WZ 9 Z @iQijc —Zai+bzyi% ®) In this paper, we extend the incremental SVM learning
- wi=1 =t =t paradigm of [4] to a general framework for incremental
with Lagrange multiplier (and offset) andQ;; = y;y;®(x;)- learning, adaptation and optimization that allows one to learn
®(x;). The resulting dual form of the SVM is thef(x) = and unlearn individual or multiple examples, adapt the current



SVM to changes in regularization and kernel parameters, aRdllowing the perturbation, the partial derivatives become
evaluate generalization performance through exact leave-one-

out error estimation. In the following section, we begin by 9~ ZQU% + ZQi’on‘k (8)
addressing the problem of learning the SVM solution fo#- / hes

M training examples given the SVM solution fo¥ training +Z QulAa; +yi(b+Ab)—1=0 VieS
examples and a new batch @f training examples where leu

M > 1. Then we illustrate how the basic approach to this j — Zyjo‘j + ZykAO‘k + ZyzAaz =0. (9)
problem can be utilized to achieve our remaining objectives. In ; kes leu

the final section, we examine some initial experimental resul&pressing these conditions differentially

; . . we obtain
demonstrating the potential of this approach.

Ag; = Z QirAay + Z QulAa; +y;Ab=0 VieS(10)

Il. INCREMENTAL/DECREMENTAL LEARNING hes teu
Ah = "ylak + > yiAa; = 0. (11)
A. Karush-Kuhn-Tucker Conditions keSs leu

For a given perturbation of the unlearned vector coefficients
{Aq; : V1 € U}, our objective is to determine the necessary
changes in the margin vector coefficiedtAay, : ¥V k € S}
and the biasAb that preserve the KKT conditions on all

N >0 a=0 learned data. The overall perturbation process is controlled
gi = ow - ZQU‘O‘J‘ +yb—1{ =0 Olg a; < C (4) by a perturbat_ion _parametq::r which \_/ari.e_s.from Oto 1l as
da; o <0 a;=C the SVM solution is perturbed from its initial “unlearned” to
N final “learned” result. Atp = 0, the solution initializes to the
ow revious solution, prior to presentation of the new examples.
h:W:ZyjajEO © P ' P P P
Jj=1

The Karush-Kuhn-Tucke(KKT) conditions uniquely de-
fine the solution of dual parametefsx,b} minimizing the
form (3):

During each perturbation, the perturbation parameteis
incremented by the smallest valuep,,;, which leads to a
Based on the partial derivatives, the training examples cancategory change for at least one example. By= 1, all
be partitioned into three different categories: the Sepf unlearned vectors have reached either of the three categories
margin support vector®n the margin(g; = 0), the set S, £ or R, and both new and old data satisfy the KKT
of error support vectorsviolating the margin(g; < 0), and conditions (4) and (5).
the remaining seR of reserve vectorgxceeding the margin ~ The adiabatic incrementsa;’s are expressed as the product
(g > 0). During incremental learning, new training example§f Ap and the correspondingoefficient sensitivitiesLet
with g; > 0 are assigned directly t&, as they by construction Aax = BrAp (k € S),Aa; = NAp (I € U), and Ab =
do not enter the solution. All other new examples are initiallfAp. Substituting these expressions into (10) and (11) and
elements of a specially designated &edf unlearned vectors dividing through byAp yields the differential KKT conditions
and eventually become margin or error support vectors.  expressed in terms of the coefficient sensitivities

S Vi = =) Qubr+ ) Quh+yiB=0 VieS(12)
B. Adiabatic Increments Ap ,;5 %;

As we increment the unlearned example(s) into the solution, A _ Z yrBe + Z yh =0. (13)
the goal will be to simultaneously preserve the KKT conditions Ap kes leu

for all previously seen training data. The KKT conditions |, principle, theperturbation coefficients,, can be freely

are maintained by varying the margin vector coefficients i,osen. Given the unlearned vector coefficients will change at
response to the perturbation imparted by the incremenigfl: 1y pefore the unlearned examples change categories,
new coefficient(s). In the process, elements of the d'ﬁeregtnatural choice i\, = C : ¥ | € U}. The corresponding
categories may change state, so that the incremental Iea”EBgfficient sensitivities{ 3,3 : V k € S} are obtained by
proceeds through a sequence of “adiabatic” steps, of amplitudging this system of equations. Once the coefficient sensi-

determined by "bookkeeping” of category membership ggsies are known, we can compute theargin sensitivitiesy,

given by conditions (4). _ _for the error, reserve and unlearned vectors.
Prior to a given perturbation of the SVM solution, the partial Both {3,,8 : V k € S} and {y; : Vi € & R, U} are

derivatives with respect tga;,b: Vi € S} equal necessary for computingp..i,. Table | lists the possible cat-
egory changes that can occur during incremental/decremental
9i = ZQijaj +yb—1=0Vies$ (6) learning. The smalleshp among applicable conditions deter-

J mines the category change and perturbation gep,i,. To
h = Zyﬂ'o‘j =0. (7) determineAp,,;,, we first compute the minimump; for
7 each set of examples that can undergo a given category change



TABLE |

vector. Then the second example from the opposite class can
SUMMARY OF BOOKKEEPING CONDITIONS

be successfully incremented into the solutfon.

Common Another option is to simply proceed with the initial pertur-
Initial Category | New Category] Ap [ Condition bation and disregard condition (5) until the margin vector set
Margin Reserve s Bi <0 is no longer empty. Beyond that point, we can incrementally
Error Margin = 7 >0 correct the violation in a manner that guarantees the condition
Reserve Margin 7 v <0 will be satisfied once the perturbation process is complete. We
[ Incremental/Decremental Learning ] will explore this approach in detail below when addressing the
Margin Error Ca; B; >0 problem of adapting the SVM solution to changes in kernel
Unlearned ¢; < 0) Margin ;g ¥ >0 parameters.
Unlearned ¢; < 0) Error SE [ A>o0 . o o
| Regularization Parameter Perturbation | D. Solving for the Coefficient Sensitiviti€¢sy, 3}
] Margin \ Error ﬁcit_*gé \ Bi > AC \ To obtain the coefficient sensitivitigs3,, 5 : V k € S}, we
[ Kernel Parameter Perturbation ] must solve the system of equations represented by (12) and
Margin Error C’%a B; >0 (13). Expressed in matrix-vector form, we have
Unlearned §; # 0) Margin —Ji Yigi <0
Unlearned ¢; > 0) Reserve ’:—a Xi <0 QB8 =- Z Avi (19)
Unlearned §; < 0) Error C;—(’ Xi >0 teu
where
B (7
c. ThenAppn,in = min ApS ;. whereC is the set of possible Bs, Q11
c€C B=1| . |, vi= . ; (16)
category changes. : :
Once Apnin is known, we update the coefficients for the Bs., Qs
margin vectoray — ay + BxAp : V k € §) and unlearned
vectors(a; — a;+NAp : V1 € U). After noting the category ™ = |S| and
change, we recompute the coefficient and margin sensitivities 0
and determine the next perturbation. This process repeats until Jor o vee Ysn
_ 1 y51 Qslsl s Qslsn
p=1. Q= . ) ) . (7)
C. The Initial Perturbation Ys,, Qsnsp --- Qs,s,

Special coqsidgrgt_ion mqst be gi\_/en to the case WhEW’e require the invers® — Q-
no SVM solution initially exists. In this scenario, all of the
training examples are initially unlearned afd; =00 = 8= _Z)‘lel' (18)
0 : VI € U}. This implies the equality condition (5) is eu
immediately satisfied. If we begin incrementing the unlearned ) )
vector coefficients, we will immediately violate this conditiorfS the perturbation process proceeds, we can easily dlapt

! to compute the sensitivities

unlessS”, .., yx = 0 so that as examples are added and removed from the margin vector
e setS [4]. When adding an example 8, R expands as
h=>Y yjo;+CApY yp =0. (14) 0
J keu T
. R 1 ﬁsn+1 ’6571+1

Most often, there will not be an equal number of exampleg — 0 + o 1 1
from each class, and the equality condition cannot generally 0 0 0 R
be preserved. (19)

The; margin_ vector coeffic_ie_n_ts allow the p_rese_zrvqtion of thEhere B..., = -Rv,,,, and VI = Qurrenns +
equality condition when an initial SVM solution is given. The, B..... When removing a margin vectdr from S, R

margin vectors provide the degree of freedom to counterbgg’m;acts as
ance the changes in the unlearned vector coefficients. One
way tc_) preserve condition (5) is to bootstrap the.proces,.s_t')y Rij e Ry — —E w4 5 e SU{0bi,j#k (20)
selecting one example from each class and learning an initial Ry
SVM. Th_|s_|s accompllshed by first s_electlng one exampb;here index O refers to thieterm.
and modifying only the bias so that this example is a margin
2There is the potential for a degenerate solution to arise if the regularization

INote that it is possible for the unlearned vector set to become empty, gratameteC is set too low such that both examples become error vectors [2].

the incremental perturbation to terminate, whert 1. If this does occur, the problem can be easily corrected by incre&sing




TABLE I

E. Decremental Learning and Cross-Validation
CATEGORY REASSIGNMENT FOLLOWING KERNEL PARAMETER CHANGE

The adiabatic increment process is fully reversible [4].

Decremental “unlearning” provides the flexibility to perform  [_Previous Example Categoryy g: >0 [ gi <0 |

leave-one-out error estimation (or more generapld cross- Reserve Vectord; = 0) Reserve | Unlearned
o L. . . W - Margin Vector () < «; < C) | Unlearned| Unlearned

validation). This is accomplished simply by “unlearning” the Error Vector f; = O) Unlearned| Error

relevant example(s) and computing the corresponding class
label(s) using the resulting SVM.

When unlearning a subsét of the training examples, our Given the error vector coefficients will change at most by
objective is to decrement the coefficiedts; : VI € U} t0 0, AC = C,ew—C, a natural choice for perturbation coefficients
while retaining the KKT conditions on all other data. Beforés now {\, = AC :V [ € £}.
we begin the perturbation process, if any of the examplés in  The only subtle difference in the perturbation process arises
are currently margin vectors, we must first contract the inveragnen computing theAp required for a margin vector to
R so that the corresponding KKT conditions of the unlearndgecome an error vector. Unlike in incremental learning where
vectors are no longer enforced. Once this is complete, Weis fixed, C' varies during the perturbations:
compute the coefficient sensitivitigss,, 3 : V k£ € S} and
margin sensitivitieg; : Vi € £, R} using equations (18) and Cipr=Ci + ACAp, Co =C. (24)
(12) as before. In the decremental scenario, the coefficightn margin vector becomes an error vector for some positive
sensitivities for the examples # equal{\; = —a; : VI € Ap, the following must hold:

U}. Note that when determinindp.,i, for each perturbation,

we only need to track category changes for the remaining s + Bs, Ap = G + ACAp. (25)
margin, error and reserve vectors. This implies
Ct — Oy,
[1l. PARAMETER OPTIMIZATION Ap = NG (26)
Sk

The key condition that enables incremental learning Wheg indicated in table 1.
using the hinge loss is the fact that the partial derivatiyes ]
and h are linear functions of the parametefs;,b}. This B. Kernel Parameter Perturbation
allows us to adiabatically perturb the SVM solution in the To perturb the SVM solution as we vary the kernel param-
manner introduced in the previous section. In general, tkéers requires a slightly different strategy. Unlike incremental
SVM solution can be perturbed adiabatically with respect tearning and regularization parameter perturbation, we cannot
any parameters that are linearly related to the partial deriva- general define a method for adiabatically perturbing the
tives g; and h. This implies for example that the SVM canSVM solution while transforming the kernel. Therefore our
be perturbed adiabatically with respect to the regularizati@pproach will involve first modifying the kernel parameters
parametelC' [14]. This also suggests that in general the SVMnd then incrementally correcting the previous solution until
cannot be perturbed adiabatically with respect to nonlinedhe KKT conditions are satisfied for the new kernel parameter
parameters in the kernel, for instanee in a radial basis settings.
Gaussian kernel. Although this would seem to limit the utility Once the kernel parameters are changed, we begin by
of the algorithm for general parameter optimization, we wilecomputing the partial derivativeg for the margin, error
propose a slight modification to the overall strategy that allovesd reserve vectors. Then we reclassify the category of each

us to address the nonlinear case as well. example as necessary. Table Il presents the mapping from
o . old to new category as a function @f. For the reserve
A. Regularization Parameter Perturbation and error vectors with partial derivatives that do not change

Perturbing the SVM with respect to the regularizatiosign, no category change occurs. Tdis for all of the other
parameteC’ amounts to simply incrementing or decrementingxamples will need to be modified; therefore these examples
the error vector coefficient§a; : V | € £}. By replacing the are reclassified as unlearned.
unlearned vector sét with the error vector sef in equations  During each perturbation when there are no margin vectors,
(8) through (13), we obtain the differential KKT conditions only the unlearned vector coefficients change — «; +

Agi AAp : Vi elU). Once there is at least one margin vector,
v = — = Z Qirfr + Z QuN +y3=0 VieS(21) we modify the margin vector coefficienfsy; : Vi € S} and

Ap kes leg the biasb in a manner that preserves the KKT conditions for
Ah the current margin vector sé&t The perturbation coefficients
- = =0. 22 .
Ap g‘;ykﬂk + ;ym 0 (22) A; for the unlearned vectofd are now defined as
This implies the coefficient sensitivitie§s;, 3 : V¥ k € S} \i = { —a 9> 0 @7
equal C—q; g: <0
B = _Z)\ZRVL (23) For all examples i/ with g; > 0, a; must be decremented

lee until the example either becomes a margin vecter= 0) or



reserve vectord; = 0). For examples witly; < 0, o; must be Comparing equation (18) with (37), we see that one additional
incremented until the example either becomes a margin vecterm has been introduced to forbe— 0.
or error vector &; = C). With the equations for the coefficient and margin sensitivi-
Before the perturbation process begins, the KKT conditidies in hand, the perturbation process proceeds as before. Table
| lists the possible category changes that must be tracked dur-
h = Zyj aj =0 (28) ing the perturbation process. Note that the constraint sensitivity
J p in equation (37) must be updated prior to each perturbation
still holds. In order to preserve this condition, the constrainto ensure that = 0 when the final perturbation is complete.

Z y;Xj =0 (29) IV. EXPERIMENTAL RESULTS

jeu In order to assess the benefits offered by the incremental
must be satisfied. In general, this constraint cannot always foemework, we conducted two experiments using the Pima
satisfied, even by rescaling the perturbation coefficients in sucidians dataset from the UCI machine learning repository [1].
a way that the signs of the coefficients are preserved. Therefgrging an RBF kernelK (z,y) = exp _Hm(;izﬂ\z , we first
during the first perturbation we will intentionally violate thefixed the kernel width and varied (increased or decreased)
KKT condition and correct the violation incrementally oncenhe regularization parameter over the range indicated in table
the margin vector set is no longer empty. We shall see ng§t Then we fixed the regularization parameter and varied
that this is easily resolved. (decreased or increased) the kernel width over the range
Prior to a given perturbation of the SVM solution whenngicated in table IV. Both tables list the number of float-
|S| > 0, the partial derivatives with respect {ov;,b: Vi € ing point operation kernel evaluations and perturbations
S} equal required for both full retraining and the incremental approach.
, Note that the center row in each table does not list statistics
9i = ZQ“% tyb-1=0Vies B9 tor the incremental approach because the corresponding fully
! (re)trained SVM serves as the initial SVM for the series of
h = Zyjaj =€ (31) perturbations. Full retraining corresponds to an incremental
J learning session over the entire training data, starting from

Following the perturbation, the partial derivatives equal ~ the empty set.
Beginning with table 1ll, we find that as the regularization

gi = Z Qijaj + Z QikBkAp parameter is increased, the computational savings offered by
J kes the incremental approach increases. There are two components
+ ZQ“/\IAP +4;(b+BAp)—1=0 ViedS (32) to the overall cost in terms of floating point operations for
leu the incremental approach that are worth noting. FirstCas

[ the number of error vectors decreases. This leads to
h=) yja;+ Ap+ Y yNAp = e+ pAp (33) NCTeases, e nul : .
;yﬂ ! I;Sykﬁk P lezuyl 1=p pAp (33) a steady decline in the number of kernel evaluations required.

o o At the same time, the number of margin vectors is increasing
. . . ayn . A’ . . . h .
first define the constraint sensitivily= 3. Given we want margin sensitivitiesy; and leads to increases in the overall

h = 0 when the perturbation process is complete (whea gt

1), Ah = —e whenAp = 1 — p. Thereforep = . Examining table IV, we see that as the kernel width is de-
Differencing the equations fgy; and/ and dividing through creased, the computational savings offered by the incremental
by Ap leads to approach decreases. This is due to the increasing number of

Ag; ) margin vectors that result. Unlike in regularization parameter

V= Ap = Z Qirr + Z QuA +yif =0 VicS(34) perturbation, cached rows of the kernel matrix do not provide

kes teu any benefit when modifying the kernel width. We must instead

% = Zykﬂk + Zyl)\l =p. (35) recompute the needed rows of the kernel matrix as is the

P s eu case in full retraining. Therefore as the relative fraction of

unlearned vectors that result in margin vectors increases,

Expressing this system of equations in matrix-vector form, e computational cost of the incremental approach becomes

obtain -
comparable to that of full retraining.
QB =pe1 — > _ v (36)
leu V. CONCLUSIONS
wheree; = [1 0 ... 0] € IRISI*1 This implies the In this paper, we have presented a framework for incre-
coefficient sensitivitied 3y, 5 : V k € S} equal mental learning and adaptation of support vector machine
B =pRe; — Z AMRvy. 37) 3The number of floating point operations was determined usingfltips

leu command in MATLAB.



TABLE Il

COMPARISON OF THE COSTS OF FULL RETRAINING WITH THE INCREMENTAL APPROACH FOR FIXE®? AND VARYING C

Pima Indians,c? = 4
Floating Point Operationgx10°) Kernel Evaluationgx10°) Perturbations

C |S] | |€] | |R] | Full Retraining | Incremental | Full Retraining | Incremental | Full Retraining | Incremental
0.354| 72 | 432 | 264 1.23 0.200 1.190 0.320 1061 58
0.5 | 97 | 401 | 270 1.46 0.250 1.200 0.296 1086 67
0.707 | 121 | 364 | 283 1.71 0.255 1.200 0.263 1119 60
1.0 | 150 | 328 | 290 1.12 - 0.965 - 825 -
141 | 188 | 284 | 296 2.37 0.403 1.210 0.294 1164 73
2.0 | 223 | 244 | 301 1.82 0.430 1.040 0.256 944 64
2.83 | 247 | 212 | 309 3.05 0.417 1.220 0.217 1198 53

TABLE IV

COMPARISON OF THE COSTS OF FULL RETRAINING WITH THE INCREMENTAL APPROACH FOR FIXEG® AND VARYING o2

Pima Indians,C =1
Initial | Floating Point Operationgx10®) Kernel Evaluationgx10°) Perturbations

o> [ |S] [ 1€] | IRl | Y| | Full Retraining | Incremental | Full Retraining | Incremental| Full Retraining | Incremental
1.41| 347 | 260 | 161 | 500 2.690 2.94 1.004 1.000 730 721
2.0 | 269 | 286 | 213 | 483 1.980 2.07 0.991 0.975 774 740
2.83 | 204 | 299 | 265 | 442 1.520 1.49 0.981 0.944 813 760
4.0 | 150 | 328 | 290 - 1.120 - 0.965 - 825 -
5.66 | 109 | 341 | 318 | 205 0.852 0.488 0.952 0.533 832 286
8.0 | 81 | 356|331 | 154 0.700 0.347 0.943 0.479 836 224
11.3| 51 | 370 | 347 | 120 0.602 0.267 0.924 0.446 818 197

classifiers that aims to simplify the model selection task by4]

perturbing the SVM solution as the regularization and kernel

parameters are adjusted. Empirical results on UCI benchmalrgj
data suggest regularization parameter perturbation can offer
significant computational savings, whereas the computation(%l

benefits of kernel parameter perturbation may be more limited:

In general, the benefits of incremental adaptation are most
substantial for small perturbation of kernel or regularizatio
parameters, as one may expect in each optimization step

model selection.
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