A Mission Plan Representation for Autonomous Reasoning of

Consequences
Brian C. Becker
Avelino Gonzalez
University of Central Florida
Orlando, FL 32816
407-823-5027
Brian@BrianCBecker.com, gonzalez@mail.ucf.edu
Keith Garfield
Institute for Simulation and Training
3280 Progress Drive
Orlando, FL 32826
407-882-1342
kgarfiel@ist.ucf.edu
Keywords:
Autonomous reasoning, replanning, dependences

ABSTRACT For an autonomous agent, the ability to assess the impact of an event on the agent’s
current course of action is essential if the agent is to react to events encountered during a mission. One
aspect of achieving such a reasoning capability is to develop a representation for the mission plan amenable
to assessment. We present the Mission Plan Dependence Graph (MPDG) and discuss its uses with respect
to autonomous reasoning of consequences and replanning. This is an initial definition of the MPDG, which
is part of larger reasoning model being developed. The MPDG represents a mission plan as a directed,
acyclic graph explicitly representing actions, actions sequences, and dependences between actions. The model
leverages concepts developed within the Program Dependence Graph program representation by applying them
to planning graphs. The MPDG directly supports reasoning of primary and secondary effects of events on

a mission plan, mission execution, and replanning operations.

multi-echelon planning environments.

1. Introduction

Planning is essential to an action oriented, goal-
driven agent. In general it is not possible to develop
plans for all contingencies a priori. Therefore, re-
planning is an equally essential capability to allow the
agent to react to events as the mission unfolds. While
successes have been achieved within limited domains,
the challenge remains to develop robust systems ca-
pable of operating within complex and dynamic en-
vironments. One aspect of achieving a generalized
planning system is to develop a representation of a
mission plan. The goals for such a representation are
to represent plans concisely, allow queries regarding
the impact of unanticipated events, allow operations
to denote mission progress and replanning, and rep-
resent plans involving multi-agent cooperation.

This paper presents the Mission Plan Depen-
dence Graph (MPDG), which is part of a larger Au-
tonomous Reasoning of Consequences (ARC) model.
The ARC is composed of a World Model (WM), an
MPDG, and a Reasoning Agent (RA). The WM rep-
resents real world agents and the environment they

The MPDG also support multi-agent and

operate in, and defines an agent’s internal model of
a real world environment. The MPDG represents
a mission plan by graphically specifying a series of
actions intended to accomplish some result in the
WM and specific dependence relationships between
them. These dependences are adapted from similar
concepts developed for use in formal computational
models, such as the Program Dependence Graph
(PDG) [Horwitz and Reps, 1992]. The Reasoning
Agent (RA) performs operations on the MPDG to
assess plan status, determine how real time events
may affect the plan, and perform replanning when
necessary. In this paper we define the MPDG and
provide an overview of its uses. The remainder of
this paper provides an overview of mission planning
approaches, an overview of the ARC model compo-
nents and features, a formal definition of the MPDG,
operations on the MPDG, and conclusions.

2. Background

Automated planning by software agents contin-
ues to be the focus of a great deal of study. In
a typical planning problem, an agent is presented

with an initial state and a desired goal state and
must develop a sequence of actions, or mission plan,
to accomplish the goal state. Obtaining a glob-
ally optimal sequence of actions is not possible in
the general case due to the inherent intractable na-
ture of obtaining optimal sequences (the Traveling
Salesman problem), access to incomplete or ambigu-
ous information about the environment, and the po-
tential for conflicting criteria defining mission suc-
cess. The problem is aggravated by the dynamic
nature of environments in which non-trivial plan-
ning tasks are carried out. Replanning is critical in
environments where novel situations or unexpected
events are encountered [Sapena and Onaindia, 2002,
Interrante and Rochowiak, 1994]. This implies that
an agent must have an ability to assess the conse-
quences of new information or events on an existing
mission plan, and be capable of modifying the plan
accordingly.

Various paradigms have been attempted to im-
part mission planning capabilities to software agents.
While each have strengths, none have achieved
a robust capability for agents operating in com-
plex, dynamic environments. Cognitive solutions at-
tempt to mirror the processes of the human mind
[Lehman et al., 1996]. These approaches have the ad-
vantage of allowing a human observer to query the
agent’s rationale for developing a particular plan.
These solutions traditionally suffer from limitations
on knowledge representation systems, coupled with
potentially vast amounts of knowledge required to op-
erate in a complex environment. Computational solu-
tions, such as the Goals, Operators, Methods, and Se-
lection (GOMS) model [Card et al., 1983], treat plan
development as a search through (potentially large)
solution space. Neural network solutions attempt to
mirror the physical structure of the brain. Neural
network solutions have had success in identifying pat-
terns and trends indicating which course of action
may be profitable. Genetic Algorithm (GA) tech-
niques treat behavior development as a search for a
near-optimal solution through a series of progressive
candidate solutions that are treated as genetic ma-
terial [Campbell et al., 2006]. Computational, neu-
ral network, and GA solutions tend to require large
computational efforts that limit their usefulness in
adapting to novel situations.

The MPDG is an outgrowth of the planning
graph paradigm. Planning graphs grew out of
a form of problem solving techniques that were
in turn influenced heavily by theorem proving

[Blum and Furst, 1997, Fikes and Nilsson, 1971]. A
theorem proving problem is one in which a set of
true statements or conditions are given as an ini-
tial condition, and a conclusion is reached through a
sequence of logical operations acting on the known
true statements (or other true statements derived
from them). The parallel between achieving a goal
state from an initial state through a plan of se-
quential actions is readily made. Blum and Furst’s
[Blum and Furst, 1997] GraphPlan planning system
is a popular example of this paradigm that is dis-
cussed further in Section 5.

Complex environments may contain multi-
ple cooperating agents attempting to accom-
plish a single task [Kalofonos and Norman, 2004,
Campbell et al., 2006]. This may require that
an agent be aware of another agent’s capabili-
ties and world view, a process known as perspec-
tive taking [Hiatt et al., 2004]. Emergent multi-
agent systems investigate the utility of reactive
agents producing sophisticated emergent behavior
[Campbell et al., 2006].

Planning and replanning activities may be rep-
resented within formal systems through symbols and
operations on these symbols. Desirable traits for such
a system include that it is efficient in representation,
amenable to queries by a human or software agent,
represents constraints among competing actions, and
supports operations allowing assessment and modifi-
cation.

3. ARC Components

In this section we develop a notation to discuss
and develop the MPDG. We begin by defining ARC
WM components and their relationship to a mission
plan. The ARC model, and more specifically the
MPDG, describes real world events that are to oc-
cur in a specific sequence to attain some goal. In-
formally, a model is a mathematical approximation
of a real world system representing a finite number
of measurable features of interest of the real world
system [Walton et al., 2003]. Models specify a set of
attributes representing features of interest, and may
be coupled with arithmetic/logical (A/L) functions
that update the values of these attributes to repre-
sent the state and behavior (state changes) of the
real world system being investigated. The WM con-
tains individual attributes, collections of attributes
(states), actions modifying attribute values, agents
performing the actions, and mission plans designat-
ing sequences of actions to achieve a goal state.

We define a feature of a model, denoted as f, as a

measurable aspect of a real world system represented
in the model (Definition 1). An attribute, denoted
a, is a range of values that may be assigned to a fea-
ture [Petty and Weisal, 2003, Garfield, 2006]. We use
the formal definition given in Garfield [Garfield, 2006]
within the ARC model. This definition is in accor-
dance with the requirement that simulations con-
tain explicitly defined boundaries and constraints
[Walton et al., 2003]. We refer to an individual value
residing in an attribute as an attribute value, and de-
note it as a. We further denote that an attribute
vector, A, is a tuple of attributes (Definition 2), and
an attribute value vector, Ay, is a tuple of specific
values from each attribute contributing to the vector
(Definition 3).

Definition 1 (Feature) A feature, f, is a represen-
tation of a measurable aspect of the real world system
being studied.

Definition 2 (Attribute Vector) An attribute
vector, A, is an ordered tuple of attributes, A =
(ala az,ag, ..., ak)

Definition 3 (Attribute Value Vector) An at-
tribute value vector, A,, is an ordered tuple of at-
tribute values, A, = (a1,q9,as,...,ak), such that
o; € a;, for 1 <i<k.

We define an entity within a scenario as a set
of attributes representing a corresponding real world
physical object or conditions. The association of a
set of attributes with a single physical object implies
that if a single attribute in the set is present in the
scenario, then the entire set in present. For example,
the addition of a UAV to a mission scenario requires
that all attributes representing that specific UAV be
added to the scenario. Similarly, the loss or removal
of the UAV requires the removal of all attributes in
the set.

We define a state as the values of an arbitrary set
of attributes. A state of an entity at any point in a
scenario is given by the values of the entity attributes.
State attributes are not necessarily associated with
a single physical entity, but are grouped according
to measures of interest of mission progress and goals.
For example, typical mission states of interest are the
initial (or start) state, current state, and goal (or fi-
nal) state. These states are used to define mission
status within the WM, but may not all components
may belong to the same entity.

Definition 4 (State) A state, S, is an attribute
value vector of interest to observers and participants
imn a mission plan.

Actions and events are mechanisms within the
ARC model enacting state changes. An action is
composed of a designation of the acting agent, a pre-
action state, a post-action state, conditions that must
be met for the action to be performed, and a time
duration. The ARC model utilizes discrete actions
as primitives. These actions have clearly identifiable
pre-action states, post-action states, and durations.
Post-actions states are typically defined through a
transformation function acting on a portion of the
pre-action state. Continuous actions are approxi-
mated through iteration. For example, movement
for a UAV may be defined through the primitive
action Move, which translates the UAV through a
unit of linear space and requiring some fixed unit of
time, t. Continuous UAV movement is approximated
through the iterated form Move(:), translating the
UAV through 4 units of linear space and requiring
1 * t units of time.

Definition 5 (Action) An action, § is a tuple {id,
P(Sconp), So, S5 = Fr(S,), dt } where:

1. id is an identifier for the agent performing the
action,

2. P(Sconp) is a Boolean predicate describing a
conditional state, Sconp, that must evaluate
to True before the action may be executed,

3. S,, is an attribute vector describing state of the
agent relevant to the action prior to the erecu-
tion of the action,

4. Sy =Fr(S,), describes the final, or post-action,
state of the agent relevant to the state as a
transformation on the initial state, and,

5. dt represents the estimated time required for the
action to complete.

Agents are defined as a set of attributes and a set
of actions available for the agent to perform. Thus, a
surveillance UAV may be defined as a set of attributes
denoting the limits of location coordinates, altitude,
speed, fuel load, etc..., and a set of actions the UAV
may perform to alter the state of these attributes
within those limits. Related entities are resources,
which consist of attributes but have no ability to act.

Resources may be produced, transferred, and con-
sumed by agents through their actions. An enwviron-
ment is a subjective term, consisting of all entities
and attributes external to a set of agents. Thus an
environment is relative to the point of view of those
operating in it. For example, to a team of UAVs the
environment is composed of the terrain and surveil-
lance targets, but to a single UAV the environment
also contains the other UAVs.

Definition 6 (Agent) An agent is defined by its at-
tribute vector, Ay, and the set of actions, denoted A
it may perform.

We define a mission as a sequence of actions and
decision points selecting between alternate potential
courses of action. In a text format, a sequence of ac-
tions is created by listing actions in the order they
are intended to occur. A decision point, P, is roughly
comparable to an IF-THEN-ELSE structure, and is
essentially an attribute, a, paired with a selector func-
tion, Fs. Upon execution, the selector function oper-
ates on an input attribute value vector and resolves
to a single attribute value, a = Fs(Avinput), @ € a.
The value of a determines which action sequences
will be executed. For a single agent, missions are
necessarily sequential, and only one action sequence
will initiate as a result of the selector function. For
multi-agent environments, multiple sequences of ac-
tion may be initiated.

It is useful to be able to describe certain rela-
tionships between the actions and decision points in
a mission. We borrow the notion of a dependence
from the field of computer science [Kuck et al., 1981]
to describe specific relationships between elements of
a plan. Program dependences specify computational
sequences that must be respected in order to main-
tain program meaning. Within the MPDG, mission
dependences specify a partial ordering of action se-
quences that must be respected to maintain mission
results. This has direct implications in reasoning
about consequences of events, mission planning, and
re-planning.

Flow dependences describe the relationship be-
tween producers and consumers of a resource or infor-
mation. Control dependences describe the relation-
ship between decision points and the actions resulting
from resolution of these decision points. Def-order
dependences are a result of an interaction between
flow and control dependences. Mission dependences
are formally defined below:

Definition 7 (Control Dependence) Action dp
is control dependent on Decision point Pa iff

1) P4 is a mission decision point containing an
expression that will resolve to a single value,
a € a.

2) Exactly one value, ag € a results in 0p’s
execution.

3) There are no intervening statements for

which (1) and (2) apply to dp.

Definition 8 (Flow Dependence) Action ép is
flow dependent on 64 iff da contains some attribute,
a, in its post-condition state, Sg, and dp requires that
attribute in its pre-condition state, S,, or predicate,
P(A), and there are no intervening actions on some
action sequence path from d4 to 6p for which this
applies.

Definition 9 (Def-Order Dependence) i is
Def-Order dependent on d4 iff

1) Both d4 and 0p both contain a value for at-
tribute a in their final state set, Sg.

2) §4 precedes dp in a strict execution sequence.

3) There is some action ¢ that is flow depen-
dent upon both 64 and ép for attribute a.

4.
Graph

The MPDG is an acyclic, directed graph com-
posed of a node set and four edge sets. The node
set is composed of a Start node, action nodes, deci-
siton point nodes, and an End node. The Start node
contains an initial state of interest, S;, and repre-
sents a unique point initiating the mission plan. Ac-
tion nodes identify the agent performing the action,
the pre-action state, and post-action state. Deci-
sion nodes represent decision points in the mission
plan and allow a single action sequence to branch
into two or more possible sequences as a result of a
predicate, P(Ay). The edge sets represent sequence,
flow dependence, control dependence, and def-order
dependence relationships within the mission. Tempo-
ral dependences are not explicitly represented in the
MPDG, but are implied. For example, if action B re-
quires a resource or information supplied by action A,
then we imply that action B cannot start until action
A is completed. This is implied within the MPDG by
the presence of the flow edge from A to B. A simple
example of a UAV surveillance mission having two
possible flight paths and the corresponding MPDG is
given in Figure 1.

The Mission Plan Dependence

T
et @
aE® T E
e 1 :
— L ;
O > T,
Flight Plan A:

O
.f"l
T® :
Oansezen®” ¥
S T e Y Ty
it Plan B:

o | Mr.‘r.-[ﬁ BIH 5L|NI'I3'I HMI:N['I'? TZ) -I—I-| Sur\.-['l?'l H f-'ll:Nl"l? = |

®__-..| Mav(S, T4 }—;-| SurviTi)

r."“-""-"”'Iﬂ.d.mmi aun!lilll . 1
| MoT1, T2I"|""| qum H”“"m EJH 5un.-'[73] H Mwm >
—= Seguence
-------- -« Sgnitrol Dep FM
» Flaw Dep j“
Key

Figure 1: Example: MPDG Containing Two Possible Mission Paths

Definition 10 (Action Sequence) An action se-
quence, S, is a tuple of actions indicating that each
action occurs one after the other in a discreet fashion.

5. Related Work
We briefly present work related to the MPDG.

Program Dependence Graphs The Program
Dependence Graph (PDG) has achieved wide spread
acceptance as a useful tool for software engi-
neering, program analysis, and automated se-
quencing of program statements [Garfield, 2006,
Horwitz and Reps, 1992, Zhao, 1999]. The PDG
gains its utility by explicitly representing depen-
dences (corresponding to those in Definitions 7, 8,
and 9) between program statements. These depen-
dences impose a partial ordering on sequences of
statement execution that maintain program mean-
ing [Kuck et al., 1981]. This provides the basis for
“safe” program transformations exploring alternate
execution sequences, which corresponds to explor-
ing alternate sequences of actions comprising a plan.
The PDG structure also allows rapid determination of
program effects through traversal of the PDG edges.
Slicing, described in Section 6, is an example of this
type of analysis.

Planning Graphs A planning graph is a directed,
leveled graph composed of two node sets and three
edge sets [Blum and Furst, 1997]. Nodes are divided
into proposition nodes, encoding a proposition about
the system, and action nodes operating on the propo-
sitions. The two nodes sets reside at alternating lev-
els in the graph, such that initial propositions reside
at time one, followed by actions performed at time
one, resulting propositions at time two, followed by
actions taken at time two etc... The edge sets corre-
spond to preconditions, add-edges , and delete-edges.
Precondition edges connect propositions with actions
within the same time step, while add- and delete-
edges connect actions to their Add- and Delete-effects
in the next time step. Propositions are carried for-
ward in time through ”"no-op” actions.

The MPDG differs from the planning graph in
several respects. Planning graph edges depict in-
formation flow between actions, while MPDG edges
represent dependences between actions. The MPDG
represents the passage of time as an attribute of an
action, as opposed to a property of graph structure.
The MPDG allows actions of past time steps to di-
rectly affect actions performed in any future step as
opposed to carrying effects forward through “no-op”
actions.

6. Operations on the MPDG

In this section we briefly describe operations on
the MPDG and their utility in assessing consequences
of action and potential replanning activities.

Determining Effects Determining if an existing
course of action is affected by an event is critical
to identifying conditions requiring replanning of the
mission. Within the ARC model, actions affected
by an event are identified in a straightforward fash-
ion through set intersection operations. If the in-
tersection of an action’s action attribute set and the
attribute set modified by an action or event is non-
empty, then the action is affected. If the event is in
the future, a backwards traversal of sequence edges
will identify decision points in the plan where alter-
nate courses of action may yet be pursued. The pres-
ence of dependence edges allows the reasoning agent
to identify other actions affected in a secondary man-
ner by the event (see Slicing discussion below).

The RA must also assess the degree to which an
action is affected by an event. The degree of effect
may be determined by evaluating durations and re-
source usages along action sequences. This allows
sequential paths of actions to be selected based on
specific criteria, such as minimizing time or resource
usage to achieve the goal state. Since the MPDG is
self-describing to this degree, the reasoning agent has
available all information required to make the assess-
ment.

Mission Execution and Real Time Replanning
Mission execution may be represented directly within
the MPDG through a process known as graph rewrit-
ing [Garfield, 2006]. Graph rewriting is a node by
node process that transforms a graph through a set
of rewriting rules. In the case of mission execution, a
set of rewriting rules may be developed for the MPDG
to update agent and mission states as actions are per-
formed, trace which actions have been completed or
are capable of being initiated, and track mission suc-
cess criteria as the mission is executed. The rewriting
rules describing mission execution will leave the graph
intact and allow after action review to be performed
using the MPDG as a record of events.

In contrast to rewriting, replanning may require
that portions of the MPDG be removed and re-
created. Replanning is assisted by the presence of
the dependence edges, which impose a partial order-
ing on the actions, thus guiding the replanning pro-
cess. Lazy execution schemes [Garfield, 2006] may

be developed that initiate actions only after it has
been determined that they contribute to achieving
the goal state. Essentially, a demand for actions is
propagated through the MPDG backwards from the
goal state node, identifying which action and decision
nodes contribute to the goal state. Changes in mis-
sion goals may be addressed in this manner. When
such a scheme is in use, the MPDG may explicitly
represent a number of potential actions and alternate
courses of action, with the most effective sequences
selected in real time as the mission unfolds.

If replanning is required, modifying the sequence
of actions may be done in real time by modifying se-
quence edges. Since the dependence edges enforce a
partial ordering on the action nodes, only useful alter-
nate sequence paths are investigated. In cases where
exact sequences are not important, sequence edges
are omitted and “next action” are selected from a set
of candidate actions that have no incoming depen-
dence edges. In other cases, such as the “Traveling
Salesman” problem, there may be no benefit in terms
of dependence edge restrictions from selecting one ac-
tion over another, but there may be benefits in terms
of resource or time usage. As Traveling Salesman is
a known NP-complete problem the MPDG is only as
efficient as other representations in resolving optimal
action sequences.

Aggregation and Dis-aggregation We borrow
the terminology of aggregation from the Model-
ing and Simulation (M&S) community to describe
the act of collapsing an action sequence into a
single conceptual action. This definition of ag-
gregation within the MPDG has direct correla-
tion to function composition in software program-
ming and chunking [Lehman et al., 1996] or abstrac-
tion [Nicolescu and Mataric, 2002] in machine learn-
ing systems. The inverse operation, dis-aggregation,
explicitly represents the primitive and iterated ac-
tions comprising an aggregate action. Aggregation
and dis-aggregation techniques allow for efficient,
scalable representation of missions while maintain-
ing fine grain visibility at selective points of inter-
est in the mission [Tan et al., 2001, Interrante, 1991].
They also allow for mission phases to be rep-
resented contextually, such as in the Context
Based Reasoning (CxBR) paradigm [Salva, 2003,
Gonzalez and Saeki, 2001]. Aggregation and dis-
aggregation mechanisms also allow a single behavior
representation system to describe multi-echelon be-
haviors and plans. For example, a mission plan de-

veloped at the brigade level may include companies as
agents with primitive and iterative actions scaled ap-
propriately. A company commander developing com-
pany level actions required to fulfill the company’s
portion of the overall mission may plan using pla-
toons and squads as agents, and then aggregate the
results upward into the battalion plan. Similarly, a
single MPDG may be processed to provide different
views to users operating at different echelon levels.

We formally define aggregation for a single agent
within the MPDG in Definition 11.

Definition 11 (Aggregation) Given action se-
quence 01,03, ...,0, we define an aggregate action,
daca = { agent;d, Ps,, S51, S(sk, ti+to+... +tk}.

Mission Slicing The program slice was introduced
by Weiser [Weiser, 1984] in the context of software
programming and debugging. As devised by Weiser,
program slice identifies portions of a program that
potentially affects, or may be affected by, a spe-
cific point of interest in the program. Although
originally introduced for debugging purposes, the
software community soon realized their use in a
wide range of applications such as parallelization,
program differencing, program testing, complexity
measurement, and reverse engineering [Tip, 1995,
Zhao, 1999]. Numerous publications detail tech-
niques for obtaining a program slice on a graphi-
cal program representations [Tip, 1995, Zhao, 1999,
Walkinshaw et al., 2003, Liang and Harrold, 1998,
Chen and Xu, 2001, Allen and Horwitz, 2003]. A
slicing procedure operating on a graph extracts the
nodes related, directly or indirectly, to a specific com-
putation in the original program. The problem of
creating a program slice is essentially a graph reach-
ability problem [Tip, 1995]. The backwards slice is
created by traversing dependence edges backwards
through the dependence graph. The forward slice is
created by traversing dependence edges forward from
the point of interest.

Slicing can be applied directly to the MPDG such
that a mission slice identifies mission elements that
potentially affect, or may be affected by, a specific
point of interest in the plan. Slices may be used to
identify plan elements that may require modification
based on the expectation of a change to future missio
parameters. Similarly, the impact of failure or modi-
fication of a current plan element may be assessed in
terms of future consequences. Additionally, tasks and
action sequences that may be performed in parallel
are identified as residing in separate slices.

7. Conclusions

We have presented a new representation for mis-
sion planning, the MPDG, explicitly representing
mission activities and their dependence to one an-
other. The MPDG borrows from well established
and successful principles used in program represen-
tations, specifically the Program Dependence Graph.
The MPDG contains information regarding specific
sequences of action taken within the plan, and con-
straints in the form of dependence relations that en-
sure that re-planned sequences achieve the same re-
sult as the original plan. We have provided a tech-
nique, the mission slice, that allows agents to identify
plan components that are directly and indirectly af-
fected by events occurring as the plan is carried out.
We have shown that the MPDG is amenable to multi-
echelon planning scenarios and aggregate actions.

The MPDG inherently supports parallel oper-
ations, and thus multi-agent plans. Each ac-
tion (node) within the MPDG is self-describing,
allowing perspective-taking without requiring di-
rect knowledge of the acting agent’s world view
or inherent capabilities. There are several op-
portunities for further research using the MPDG
in multi-agent environments. In the immedi-
ate future, the representation is to be imple-
mented and tested. Numerous problem domains
and planning algorithms exist in the literature
[Blum and Furst, 1997, Sapena and Onaindia, 2002],
and may serve as benchmarks for comparison. Fu-
ture scenarios may employ cooperating agents shar-
ing a world view to some degree [Jennings, 1995,
Durfee, 1993]. The MPDG may be expanded to in-
clude multi-agent primitive actions to accommodate
these scenarios.

Smith et. al. [Smith et al., 2003] developed View
Centric Reasoning (VCR) to reason about parallel
events occurring in an environment containing dis-
tributed observers, each with potentially unique im-
perfect views of event sequences. This paradigm may
be used in conjunction with the MPDG to reason
about the degree of information transfer required be-
tween agents to ensure cohesiveness of action among
distributed, cooperating agents. Interesting research
questions along these lines include “How much in-
formation may be lost before a plan breaks down
through lack of cooperation?” and “Can a plan be de-
vised that is less susceptible to communication break-
downs?”

Temporal reasoning may be included as part
of behavior selection [Likhachev and Arkin, 2001].

We have not explicitly included temporal reasoning
within the MPDG, but imply temporal constraints
through dependences. More research may be done
to improve the granularity and clarity of temporal
dependences between actions by applying a tempo-
ral reasoning system (such as the transitive relations
developed by [Kovarik, 1994]) to the MPDG.

8. Acknowledgments

This work was sponsored, in part, by the US Army
Research Laboratory under Cooperative Agreement
WO911NF-06-2-0041. The views and conclusions con-
tained in this document are those of the authors and
should not be interpreted as representing the official
policies, either expressed or implied, of the ARL or
the US Government. The US Government is autho-
rized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright no-
tation hereon.

References

[Allen and Horwitz, 2003] Allen, M. and Horwitz, S.
(2003). Slicing java programs that throw and catch
exceptions. Proceedings of the ACM SIGPLAN
2008 Workshop on Partial Evaluation and Seman-
tics Based Program Manipulation.

[Blum and Furst, 1997] Blum, A. L. and Furst, M. L.
(1997). Fast planning through planning graph
analysis. Artificial Intelligence, 90:281, 316.

[Campbell et al., 2006] Campbell, A., Wu, A. S.,
Shumaker, R., Garfield, K., Luke, S., and DeJong,
K. A. (2006). Empirical study on the effect of syn-
thetic social structures on teams of autonomous ve-
hicles. In Proceedings of IEEFE International Con-
ference on Networking Sensing and Control.

[Card et al., 1983] Card, S., Moran, T. P., and
Newell, A. (1983). The Psychology of Human Com-
puter Interaction. Erlbaum, Hillsdale, NJ.

[Chen and Xu, 2001] Chen, Z. and Xu, B. (2001).
Slicing object-oriented java programs. In SIG-
PLAN Notices, volume 36, pages 33,40, New York,
NY. ACM Press.

[Durfee, 1993] Durfee, E. (1993). Organizations,
plans, and schedules: An interdisciplinary perspec-
tive on coordinating ai agents. Journal of Intelli-
gent Systems, 3:157, 187.

[Fikes and Nilsson, 1971] Fikes, R. E. and Nilsson,
N. J. (1971). Strips: A new approach to the ap-
plication of theroem proving to problem solving.
Artifical Intelligence, 2:189-208.

[Garfield, 2006] Garfield, K. (2006). A Sparse Pro-
gram Dependence Graph for Object Oriented Pro-
gramming Languages. PhD thesis, University of
Central Florida.

[Gonzalez and Saeki, 2001] Gonzalez, A. J. and
Saeki, S. (2001). Using contexts competition to
model tactical human behavior in a simulation. In
Intelligent Proceedings of the Third International
and Interdisciplinary Conference on Modeling and
Using Context.

[Hiatt et al., 2004] Hiatt, L. M., Trafton, J. G., Har-
rison, A. M., and Schultz, A. C. (2004). A cognitive
model for spatial perspective taking. In Proceedings
of the Sixth International Conference on cognitive

Modeling, pages 354, 355.

[Horwitz and Reps, 1992] Horwitz, S. and Reps, T.
(1992). The use of program dependence graphs in
software engineering. Proceedings of the 1/th In-
ternational Conference on Software Engineering.

[Interrante, 1991] Interrante, L. (1991). A model for
selective attention in monitoring and control rea-
soning tasks. In IEEE International Conference on
Decision Aiding for Complex Systems.

[Interrante and Rochowiak, 1994] Interrante, L. D.
and Rochowiak, D. M. (1994). Active rescheduling
for automated guided vehicle systems. Intelligent
Systems Engineering, 3(2):87,100.

[Jennings, 1995] Jennings, N. (1995). Controlling co-
operative problem solving in industrial multi-agent
systems using joint intentions. Journal of Intelli-
gent Artificial intelligence, (2):195.

[Kalofonos and Norman, 2004] Kalofonos, D. and
Norman, T. J. (2004). An investigation into team-
based planning. In Proceedings of Systems, Man,
and Cybernetics.

[Kovarik, 1994] Kovarik, V. J. (1994). An Efficient
Method for Representing and Computing Transi-
tive Closure Over Temporal Relations. PhD thesis,
University of Central Florida.

[Kuck et al., 1981] Kuck, D., Kuhn, R., Padua, D.,
Leasure, B., and Wolfe, M. (1981). Dependence

graphs and compiler optimizations. Proceedings of
the Eighth ACM Symposium on the Principles of
Programming Languages.

[Lehman et al., 1996] Lehman, J. F., Laird, J. E.,
and Rosenbloom, P. S. (1996). A gentle introduc-
tion to soar, an architecture for hmuan cognition.
Invitation to Cognitive Science, 4.

[Liang and Harrold, 1998] Liang, D. and Harrold, M.
(1998). Slicing object using system dependence
graph.

[Likhachev and Arkin, 2001] Likhachev, M. and
Arkin, R. C. (2001). Spatio-temporal case-based
reasoning for behavior selection. In Proceedings
of the International Conference on Robotgics and
Automation.

[Nicolescu and Mataric, 2002] Nicolescu, M. N. and
Mataric, M. J. (2002). A hierarchical architec-
ture for behavior-based robots. In Proceedings of
the First International Joint Conference on Au-
tonomous Agents and Multi- Agent Systems.

[Petty and Weisal, 2003] Petty, M. D. and Weisal,
E. W. (2003). A formal approach to composibility.
In Proceedings of the 2003 Interservice/Industry
Training, Simulation and Education Conference,
pages 1763, 1772.

[Salva, 2003] Salva, A. (2003). Situational aware-
ness through context based situational interpreta-
tion metrics. Master’s thesis, University of Central
Florida, Orlando, FL.

[Sapena and Onaindia, 2002] Sapena, O. and Onain-
dia, E. (2002). A planning and monitoring system
for dynamic environments. Journal of Intelligent
and Fuzzy Systems, 12:151-162.

[Smith et al., 2003] Smith, M. L., Parsons, R. J.,
and Hughes, C. E. (2003). View-centric reason-
ing for linda and tuple space computation. IEEE
Proceedings-Software, Special Issue on Communi-
cating Process Architecture 2002, 150(2):71,84.

[Tan et al., 2001] Tan, G., Ng, W. N., and Moradu,
F. (2001). Aggregation/disaggregation in hla
multi-resolution distributed simulation. page 0076.

[Tip, 1995] Tip, F. (1995). A survey of program slic-
ing techniques. Journal of programming languages,

3:121-189.

[Walkinshaw et al., 2003] Walkinshaw, N., Roper,
M., and Wood, M. (2003). The java system depen-
dence graph. Third IEEFE International Workshop
on Source Code Analysis and Manipulation.

[Walton et al., 2003] Walton, G., Goldiez, B., Hofer,
R., and Kaup, D. (2003). Mathematical founda-
tions for modeling and simulation. Proceedings of
the SPIFE, 5091:310, 320.

[Weiser, 1984] Weiser, M. (1984). Program slic-
ing. IEEFE Transactions on Software Engineering,
10(4):352, 357.

[Zhao, 1999] Zhao, J. (1999). Applying program de-
pendence analysis to java software. Proceedings
of the International Symposium on software En-
gineering for Parallel and Distributed Systems.

Author Biographies

BRIAN C. BECKER is earning a B.S. degree
in Computer Engineering at the University of Cen-
tral Florida.

KEITH GARFIELD is an information special-
ist for the Institute for Simulation and Training at
UCF. He earned his Ph.D. from UCF in 2006. He is
researching human-agent interactions, behavior rep-
resentations, and formal models of simulation.

AVELINO GONZALES is a professor in the
Department of Electrical and Computer Engineering,
and acting director of the Department of Civil En-
gineering, at UCF. He earned a Ph.D. in electrical
Engineering from the University of Pittsburgh and
is an IEEE Fellow. His research interests include
machine learning, and validation and verification of
knowledge-based systems.

