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Abstract—Tremor was recorded under simulated
vitreoretinal microsurgical conditions as subjectsattempted to
hold an instrument motionless. Several autoregresst models
(AR, ARMA, multivariate, and nonlinear) are generated to
predict the next value of tremor. It is shown thata sixth order
ARMA model predictor can predict a tremor having an
amplitude of 96.6 + 84.5 microns RMS with an errorof 8.2 +
5.9 microns RMS, a mean improvement of 47.5% oveliraple
last-value prediction.

N

precision operations difficult or impossible. Tremds
defined qualitatively as any roughly sinusoidaldhuntary
motion [1]. In recent years, quantitative modelofgtremor
has been a subject of research [2, 3].

Several researchers have developed robotic systems
compensate or suppress tremor during microsurge
including teleoperated systems and the Johns Hepki
“steady hand” system [4]. In our laboratory, aytiandheld
active instrument called “Micron” has been develhpe

I. INTRODUCTION

which measures its own motion, separates tremom fro

desired motion, and actuates the tool tip in réaketto
compensate for the tremor [5].

In a system such as Micron, a model of the treraor lme
used for prediction during operation, and can aklwe as a
substitute for the human user in simulations of ¢batrol
system. In this paper, several classes of autmssiye
modeling techniques are applied to model tremorsonesl
from five people under three different scenariosevi®us
research has employed autoregressive techniquegsefoor
analysis, but these generally have not involvedualis
feedback, and certainly not with magnification [8].
Furthermore, importantly, most such studies harghkiied
the spectrum by bandlimiting techniques such a8lignéng
[6], analyzing the acceleration signal rather tha
displacement [3], or windowing for spectral anayii]. In
contrast, this research involves modeling of thdiren
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ORMAL physiological hand tremor causes extraneoug
movement during microsurgery, making some high-

r

spectrum of movement (except for any constant lpias
linear trend) during instrument pointing or stati@eping in
a simulated vitreoretinal surgical environment, hwit
magnified visual feedback, using standard autoesjre
(AR), AR moving average (ARMA), multivariate AR, @n
nonlinear-augmented AR techniques.

Il. METHODS

A. Equipment

To accurately measure the Micron instrument tip, an
ptical system called ASAP (Apparatus to Sense faamu

of Position) is used to provide the real-time positand
orientation of the instrument. Two LEDs mountedthe
instrument inside diffuse spheres pulse square syame at

2 kHz and the other at 3 kHz. The two signals areed by
orthogonal position-sensitive detectors (PSD’s) IDLUDT
Sensors Inc. Hawthorne, CA, USA) and demodulated to
Measure the tip position with an error of less th@nm
Rms (root mean square) [8].

n aka

(b)
Figure 1.(a) ASAP measuring and displaying instrument pasitbr
LCD screen. (b) Instrument tip with LEDs being irisd through fac
mask eye. The two notches on opposite sides funa® simulate
sclerotomies to brace the tool.

B. Experimental Procedure

Tremor data was acquired from five non-medical
personnel subjects under a board-approved protddue.
setup, shown in Figure 1, shows a subject inserthg
instrument through the hollowed out eye of the fazesk.
The instrument tip position and orientation is meleal by



ASAP and displayed on the LCD computer monitor &X 2
magnification. This “virtual Micron” setup mimicsetinal
surgery, a practical application of the Micron syst

The study involved three test conditions.

1. The first scenario asked the subject to hold th

instrument vertically through the eye. The subject

braced the instrument in a notch at the side offfe
and maintains the X, Y, and Z position of the ttypl
at a set point on the screen (pointing task). Th

approximated a typical retinal surgery where theot

surgeon braces the tool against the sclera (theewh
of the eye).

some additional input [10]. For a single signak thput is
taken to be the error terrfig of previous predictions:

p

Xp = Zakxn_k +

k=1

q
e bi&n-k+&n  (3)

k=1

These autoregressive techniques can only modedrline
systems. Although there is some evidence [11]rfembr as
@& linear process, a complete characterizationeshar has
been achieved. Thus, autoregressive techniques
augmented with nonlinear regression via wavelewvoeks
[12] were briefly investigated to model any nonkne

Secondly, subjects were required to perform theesamrocesses that might be appearing in the tremorisoral

test as above, except without the bracing (i.e. theedback loop.

instrument shaft is not in contact with the face).

For each subject and scenario, all four model typese

The last scenario asked the subjects to close theistimated for orders one to forty on the first dataExcept

eyes and maintain the instrument as still as plessibfor the multivariate autoregression, each X, Y, anad

while bracing it against the notch in the eye.

In all three cases, the hand rested on the forebéduke
face for stabilization. Each subject completed these
scenarios, rested briefly, and then completed theet
scenarios again in reverse order. This second etatasbled
cross-validation of the models. All tremor was meleml at a
sampling rate of 1 kHz for a duration of 60 s, with s
extracted from the middle of each recording to dwaimp-
up and ramp-down effects. The means and lineadsrém

component of the tremor was treated as a sepagata sind

modeled by itself. To validate how well the consted

model represents the particular subject and saerising

analyzed, it was applied to the second datasetdedainder
identical conditions. The evaluation criterion the model

was the root mean squared error (RMSE) magnitudieof
difference between the true recorded signal angtédicted
signal. A simple last-value predictat, = X,1, was also
calculated as a baseline for comparison.

the data were removed for normalization purposes. T

reduce sensor noise, the signal was decimated ktz40

C. Modeling Techniques

Autoregressive techniques simplify a dataset to
mathematical model dependent only on a small nurobe
parameters [7]. These parameters are estimatedtifreciata
and can be used to recreate the signal or pradiatef values
of the signal. Autoregressive techniques modebaadias a
linear combination of past inputs and outputs. andard
autoregressive (AR) model of orderepresents the value of
signal x at positionn by a weighted average of the
previous signal values and some e&pr

r

p

Xy = Z ag Xn—x + En

k=1

1)

Multivariate AR models exploit relationships thatis
between multiple signals [9]. For Micron, three nta
signals corresponding to the X, Y, and Z axis aralable
and may provide additional information when modele
together. In this cas&,, is a three element vector of the X,
Y, and Z tremor components and the averaging coeffis
are 3x3 matriced such that:

p
Xo= ) AKX+ &y @

k=1

An autoregressive moving average (ARMA) considerts n
only previous signal values, but a weighted averbgef

lll. RESULTS

The mean RMS tremor amplitude is 73.7 £ 53.9, 160.6
100.2, and 115.5 + 89.8 um for Scenarios 1-3 with£33.0
im sensor noise. Each model is applied to predioidr.

A. AR and ARMA Models

Figures 2-4 show the result of applying AR and ARMA
models of increasing order. The data in each figare
derived from one person across scenarios and treigoal
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Figure 2. AR and ARMA resultfor X (top), Y (middle), and Z (bottor
tremor components for a typical subjestder Scenario 1 (instrum:
braced against side of eye). For this sample, tremmplitude is 45.4, 62,9

and 5.4 um RMS in X, y, and z, respectively.
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Figure 3. AR and ARMA results for X (top), Y (midg| and Z (bottom)
tremor components under Scenario 2 (instrumenbrawted against side of
eye). For this sample, tremor amplitude is 46.49,34nd 24.1 pym RMS in
X, Y, and z, respectively.

components. The RMSE magnitudes achieved by piedsct
of AR and ARMA models 1 to 40 are displayed an
compared to the simple baseline last-value predi€oder
40 predicts the next value from one second of sigstl.

(2]
o

a
o

ARMA Model
—— AR Model

N
o

% RMSE Reduction

o

20 25 30 35 40
Model Order

10 15

Figure 5. Mean percentage improvement for AR andl/ARn comparison
with last-value prediction.

and scenarios. Using this as a baseline predi€igyre 5
shows that AR and ARMA models improve the predittio
by roughly 20-50%, depending on the model ordeduse

B. Nonlinear and Multivariate Models

The nonlinear model used was a wavelet network fia]
augmented the standard autoregressive model.
interesting result of adding the wavelet nonlinesgression
is the tendency of the nonlinear regression to favtre
data. For the dataset used to construct the mdtel,
nonlinear approached improved the prediction. Hawev
when tested on the cross-validation dataset, tleiltee
¢howed very slight improvement. For a fifth-ordeodul,
the nonlinear regression reduced the RMSE by 0.1%.

In contrast, the multivariate standard autoregvessiodel

One

As evidenced by the graphs, both AR and ARMA modeled to a 0.2% increase in RMSE on the cross-vatidatet

perform better than the baseline predictor. Whde tigh

for a second-order model and oftentimes yieldedresiable

orders AR and ARMA models converge, the ARMA modelit at higher model orders. In many instances, doders

tends to converge much more quickly, by sixth order
lower, which is in agreement with [6, 7]. The resishown
are from a typical subject; for some subjects thdSE
trends slightly upwards for higher orders of ARgutes 8-
10 provide a graphical understanding of the freqyesind
phase characteristics of the generated sixth ofdeMA
models by presenting Bode plots for the X, Y, anch@els
derived from one subject’s Scenario 1 test.

Numerically, the last-value predictor achieves aame
reduction of 81.5% in RMSE magnitude over all tbbjscts
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Figure 4. AR and ARMA results for X (top), Y (miag| and Z (bottom)
tremor components for a typical subject under Ster@a(instrument
braced, but no visual feedback). For this sampdenér amplitude is 254.0,
166.1, and 15.2 um RMS in X, y, and z, respectively

larger than 15, the multivariate models no longgperform
last-value prediction. While an improvement can
achieved on the training dataset, performance wakedly
degraded on the cross-validation set.

C. Generalized ARMA Model

While a model per person per scenario is indeetulise
unified model that generalizes across both peopld
scenarios would be more advantageous as it alkevitite
need for a pre-usage calibration step. Becausasitphoven
superior in prediction than an AR model and is EEsplex
than a nonlinear model, only the ARMA model was
investigated. First, the variances of the modelapeaters
were examined. Figure 6 shows a box and whisker gflo
the first six coefficients for all ARMA models. Thshows
the median values for the coefficients, in additionthe
lower and upper quartiles, and the furthest datatpevithin
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Figure 6. Box and whisker plot of the ARMA coeféais (the error term
coefficients yield a similar plot with smaller céiefents).
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Figure 7. Bode diagram of sixth order mean ARMA elod

a factor of 1.5 of the interquartile range. Ouflieare
represented as Crosses.

The ARMA error coefficients are similar for differe
trials. By taking the mean of these coefficients,aaeraged
ARMA model can be constructed that representsudjexts
and all scenarios. Applying the averaged model d@ohe
cross-validation run shows a slight drop in oveaaituracy
from 48.0% to 47.5% improvement over the baselife.
reduction in accuracy of approximately half a patamay
be a preferable alternative to a time-consumingpiaion
routine that learns the ARMA coefficients for eamw user.
The predicted RMSE for Scenarios 1-3 is 8.9 + 9.2, =
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IV. DiscussiOoN

In this preliminary study of modeling and predigtin
tremor using autoregressive techniques with fivbjestis
under three different scenarios, a sixth-order ARKadel
predicted tremor 48.0% better, on average, thaaszline
last-value predictor. A single ARMA model derivadrh an
average of all ARMA models shows that the problem be
generalized across all three scenarios and subjétttonly
a 0.55% drop in accuracy. With this single ARMA rabd
the tremor was predicted with a mean of 8.2 +
RMSE using raw hand movement signals with a mean
96.6 + 84.5 um RMS amplitude.

This paper also investigated other autoregressiveets.
The standard AR model performs nearly as well asM1AR
but only at much higher model orders. The multiat&riAR
model did not generalize well from the data usedsiimate
the model

increased prediction performance, but likely nobwgh to
warrant the additional complexity. Plans for futunerk
include studies with larger numbers of subjects arate
realistic microsurgical movements.
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