
 

 

 

  

Abstract—Tremor was recorded under simulated 
vitreoretinal microsurgical conditions as subjects attempted to 
hold an instrument motionless. Several autoregressive models 
(AR, ARMA, multivariate, and nonlinear) are generated to 
predict the next value of tremor. It is shown that a sixth order 
ARMA model predictor can predict a tremor having an 
amplitude of 96.6 ± 84.5 microns RMS with an error of 8.2 ± 
5.9 microns RMS, a mean improvement of 47.5% over simple 
last-value prediction. 

I. INTRODUCTION 

ORMAL physiological hand tremor causes extraneous 
movement during microsurgery, making some high-

precision operations difficult or impossible. Tremor is 
defined qualitatively as any roughly sinusoidal involuntary 
motion [1]. In recent years, quantitative modeling of tremor 
has been a subject of research [2, 3]. 

Several researchers have developed robotic systems to 
compensate or suppress tremor during microsurgery, 
including teleoperated systems and the Johns Hopkins 
“steady hand” system [4]. In our laboratory, a fully handheld 
active instrument called “Micron” has been developed, 
which measures its own motion, separates tremor from 
desired motion, and actuates the tool tip in real time to 
compensate for the tremor [5].  

In a system such as Micron, a model of the tremor can be 
used for prediction during operation, and can also serve as a 
substitute for the human user in simulations of the control 
system. In this paper, several classes of autoregressive 
modeling techniques are applied to model tremor measured 
from five people under three different scenarios. Previous 
research has employed autoregressive techniques for tremor 
analysis, but these generally have not involved visual 
feedback, and certainly not with magnification [3, 6]. 
Furthermore, importantly, most such studies have simplified 
the spectrum by bandlimiting techniques such as prefiltering 
[6], analyzing the acceleration signal rather than 
displacement [3], or windowing for spectral analysis [7]. In 
contrast, this research involves modeling of the entire 
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spectrum of movement (except for any constant bias or 
linear trend) during instrument pointing or station-keeping in 
a simulated vitreoretinal surgical environment, with 
magnified visual feedback, using standard autoregressive 
(AR), AR moving average (ARMA), multivariate AR, and 
nonlinear-augmented AR techniques. 

II. METHODS 

A. Equipment 

To accurately measure the Micron instrument tip, an 
optical system called ASAP (Apparatus to Sense Accuracy 
of Position) is used to provide the real-time position and 
orientation of the instrument. Two LEDs mounted to the 
instrument inside diffuse spheres pulse square waves, one at 
2 kHz and the other at 3 kHz. The two signals are sensed by 
orthogonal position-sensitive detectors (PSD’s) (DL10, UDT 
Sensors Inc. Hawthorne, CA, USA) and demodulated to 
measure the tip position with an error of less than 10 µm 
RMS (root mean square) [8].  

 

B. Experimental Procedure  

Tremor data was acquired from five non-medical 
personnel subjects under a board-approved protocol. The 
setup, shown in Figure 1, shows a subject inserting the 
instrument through the hollowed out eye of the face mask. 
The instrument tip position and orientation is recorded by 
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(a) (b) 
Figure 1. (a) ASAP measuring and displaying instrument position on 
LCD screen. (b) Instrument tip with LEDs being inserted through face 
mask eye. The two notches on opposite sides function as simulated 
sclerotomies to brace the tool. 



 

 

 

ASAP and displayed on the LCD computer monitor at 25X 
magnification. This “virtual Micron” setup mimics retinal 
surgery, a practical application of the Micron system.  

The study involved three test conditions.  
1. The first scenario asked the subject to hold the 

instrument vertically through the eye. The subject 
braced the instrument in a notch at the side of the eye 
and maintains the X, Y, and Z position of the tool tip 
at a set point on the screen (pointing task). This 
approximated a typical retinal surgery where the 
surgeon braces the tool against the sclera (the white 
of the eye).  

2. Secondly, subjects were required to perform the same 
test as above, except without the bracing (i.e. the 
instrument shaft is not in contact with the face).  

3. The last scenario asked the subjects to close their 
eyes and maintain the instrument as still as possible 
while bracing it against the notch in the eye.  

In all three cases, the hand rested on the forehead of the 
face for stabilization. Each subject completed the three 
scenarios, rested briefly, and then completed the three 
scenarios again in reverse order. This second dataset enabled 
cross-validation of the models. All tremor was recorded at a 
sampling rate of 1 kHz for a duration of 60 s, with 45 s 
extracted from the middle of each recording to avoid ramp-
up and ramp-down effects. The means and linear trends in 
the data were removed for normalization purposes. To 
reduce sensor noise, the signal was decimated to 40 Hz. 

C. Modeling Techniques 

Autoregressive techniques simplify a dataset to a 
mathematical model dependent only on a small number of 
parameters [7]. These parameters are estimated from the data 
and can be used to recreate the signal or predict future values 
of the signal. Autoregressive techniques model a signal as a 
linear combination of past inputs and outputs. A standard 
autoregressive (AR) model of order � represents the value of 
signal � at position � by a weighted average � of the 
previous signal values and some error ��: 
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Multivariate AR models exploit relationships that exist 
between multiple signals [9]. For Micron, three tremor 
signals corresponding to the X, Y, and Z axis are available 
and may provide additional information when modeled 
together. In this case, �� is a three element vector of the X, 
Y, and Z tremor components and the averaging coefficients 
are 3x3 matrices � such that: 
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An autoregressive moving average (ARMA) considers not 
only previous signal values, but a weighted average � of 

some additional input [10]. For a single signal, the input is 
taken to be the error terms �� of previous predictions: 
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These autoregressive techniques can only model linear 
systems. Although there is some evidence [11] for tremor as 
a linear process, a complete characterization of tremor has 
not been achieved. Thus, autoregressive techniques 
augmented with nonlinear regression via wavelet networks 
[12] were briefly investigated to model any nonlinear 
processes that might be appearing in the tremor or visual 
feedback loop. 

For each subject and scenario, all four model types were 
estimated for orders one to forty on the first dataset. Except 
for the multivariate autoregression, each X, Y, and Z 
component of the tremor was treated as a separate signal and 
modeled by itself. To validate how well the constructed 
model represents the particular subject and scenario being 
analyzed, it was applied to the second dataset recorded under 
identical conditions. The evaluation criterion for the model 
was the root mean squared error (RMSE) magnitude of the 
difference between the true recorded signal and the predicted 
signal. A simple last-value predictor, x�n = xn-1, was also 
calculated as a baseline for comparison. 

III.  RESULTS 

The mean RMS tremor amplitude is 73.7 ± 53.9, 100.6 ± 
100.2, and 115.5 ± 89.8 µm for Scenarios 1-3 with 3.4 ± 3.0 
µm sensor noise. Each model is applied to predict tremor. 

A.  AR and ARMA Models 

Figures 2-4 show the result of applying AR and ARMA 
models of increasing order. The data in each figure are 
derived from one person across scenarios and tremor signal 

Figure 2. AR and ARMA results for X (top), Y (middle), and Z (bottom) 
tremor components for a typical subject under Scenario 1 (instrument 
braced against side of eye). For this sample, tremor amplitude is 45.4, 62.9, 
and 5.4 µm RMS in x, y, and z, respectively.  



 

 

 

components. The RMSE magnitudes achieved by predictions 
of AR and ARMA models 1 to 40 are displayed and 
compared to the simple baseline last-value predictor. Order 
40 predicts the next value from one second of past signal. 

As evidenced by the graphs, both AR and ARMA models 
perform better than the baseline predictor. While for high 
orders AR and ARMA models converge, the ARMA model 
tends to converge much more quickly, by sixth order or 
lower, which is in agreement with [6, 7]. The results shown 
are from a typical subject; for some subjects the RMSE 
trends slightly upwards for higher orders of AR. Figures 8-
10 provide a graphical understanding of the frequency and 
phase characteristics of the generated sixth order ARMA 
models by presenting Bode plots for the X, Y, and Z models 
derived from one subject’s Scenario 1 test.  

Numerically, the last-value predictor achieves a mean 
reduction of 81.5% in RMSE magnitude over all the subjects 

and scenarios. Using this as a baseline predictor, Figure 5 
shows that AR and ARMA models improve the prediction 
by roughly 20-50%, depending on the model order used. 

B. Nonlinear and Multivariate Models 

The nonlinear model used was a wavelet network [12] that 
augmented the standard autoregressive model. One 
interesting result of adding the wavelet nonlinear regression 
is the tendency of the nonlinear regression to overfit the 
data. For the dataset used to construct the model, the 
nonlinear approached improved the prediction. However, 
when tested on the cross-validation dataset, the results 
showed very slight improvement. For a fifth-order model, 
the nonlinear regression reduced the RMSE by 0.1%.  

In contrast, the multivariate standard autoregressive model 
led to a 0.2% increase in RMSE on the cross-validation set 
for a second-order model and oftentimes yielded an unstable 
fit at higher model orders. In many instances, for orders 
larger than 15, the multivariate models no longer outperform 
last-value prediction. While an improvement can be 
achieved on the training dataset, performance was markedly 
degraded on the cross-validation set. 

C. Generalized ARMA Model 

While a model per person per scenario is indeed useful, a 
unified model that generalizes across both people and 
scenarios would be more advantageous as it alleviates the 
need for a pre-usage calibration step. Because it has proven 
superior in prediction than an AR model and is less complex 
than a nonlinear model, only the ARMA model was 
investigated. First, the variances of the model parameters 
were examined. Figure 6 shows a box and whisker plot of 
the first six coefficients for all ARMA models. This shows 
the median values for the coefficients, in addition to the 
lower and upper quartiles, and the furthest data points within 

Figure 5. Mean percentage improvement for AR and ARMA in comparison 
with last-value prediction. 

Figure 6. Box and whisker plot of the ARMA coefficients (the error term 
coefficients yield a similar plot with smaller coefficients). 

Figure 3. AR and ARMA results for X (top), Y (middle), and Z (bottom) 
tremor components under Scenario 2 (instrument not braced against side of 
eye). For this sample, tremor amplitude is 46.4, 31.9, and 24.1 µm RMS in 
x, y, and z, respectively. 

Figure 4. AR and ARMA results for X (top), Y (middle), and Z (bottom) 
tremor components for a typical subject under Scenario 3 (instrument 
braced, but no visual feedback). For this sample, tremor amplitude is 254.0, 
166.1, and 15.2 µm RMS in x, y, and z, respectively. 
 



 

 

 

a factor of 1.5 of the interquartile range. Outliers are 
represented as crosses.  

The ARMA error coefficients are similar for different 
trials. By taking the mean of these coefficients, an averaged 
ARMA model can be constructed that represents all subjects 
and all scenarios. Applying the averaged model to each 
cross-validation run shows a slight drop in overall accuracy 
from 48.0% to 47.5% improvement over the baseline. A 
reduction in accuracy of approximately half a percent may 
be a preferable alternative to a time-consuming calibration 
routine that learns the ARMA coefficients for each new user. 
The predicted RMSE for Scenarios 1-3 is 8.9 ± 9.3, 9.2 ± 
9.2, and 9.8 ± 8.9 µm. Additionally, the frequency and phase 
responses are shown in Figure 7 as a Bode diagram. 

IV.  DISCUSSION 

In this preliminary study of modeling and predicting 
tremor using autoregressive techniques with five subjects 
under three different scenarios, a sixth-order ARMA model 
predicted tremor 48.0% better, on average, than a baseline 
last-value predictor. A single ARMA model derived from an 
average of all ARMA models shows that the problem can be 
generalized across all three scenarios and subjects with only 
a 0.55% drop in accuracy. With this single ARMA model, 
the tremor was predicted with a mean of 8.2 ± 5.9 µm 
RMSE using raw hand movement signals with a mean of 
96.6 ± 84.5 µm RMS amplitude.  

This paper also investigated other autoregressive models. 
The standard AR model performs nearly as well as ARMA, 
but only at much higher model orders. The multivariate AR 
model did not generalize well from the data used to estimate 
the model to the cross-validation data. AR models 
augmented with nonlinear wavelet networks marginally 
increased prediction performance, but likely not enough to 
warrant the additional complexity. Plans for future work 
include studies with larger numbers of subjects and more 
realistic microsurgical movements. 
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Figure 10. Bode diagram of Scenario 1 ARMA model for Z component 

Figure 9. Bode diagram of Scenario 1 ARMA model for Y component  

Figure 8. Bode diagram of Scenario 1 ARMA model for X component 

Figure 7. Bode diagram of sixth order mean ARMA model. 


