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Abstract—Computer-aided intraocular surgery requires 

precise, real-time knowledge of the vasculature during retinal 

procedures such as laser photocoagulation or vessel 

cannulation. Because vitreoretinal surgeons manipulate retinal 

structures on the back of the eye through ports in the sclera, 

voluntary and involuntary tool motion rotates the eye in the 

socket and causes movement to the microscope view of the 

retina. The dynamic nature of the surgical workspace during 

intraocular surgery makes mapping, tracking, and localizing 

vasculature in real time a challenge. We present an approach 

that both maps and localizes retinal vessels by temporally 

fusing and registering individual-frame vessel detections. On 

video of porcine and human retina, we demonstrate real-time 

performance, rapid convergence, and robustness to variable 

illumination and tool occlusion.  

I. INTRODUCTION 

ITREORETINAL surgery is often regarded as 

particularly demanding due to the extraordinary 

precision required to manipulate the small, delicate retinal 

structures, the confounding influence of physiological 

tremor on the surgeon’s micromanipulation ability, and the 

challenging nature of the surgical access [1], [2]. Routine 

procedures such as membrane peeling require the surgeon to 

manipulate anatomy less than 10 μm thick [3–5], and laser 

photocoagulation operations benefit from accurate 

placement of laser burns [6], [7]. Promising new procedures 

such as vessel cannulation necessitate precise and exacting 

micromanipulation to inject anticoagulants into veins less 

than 100 μm in diameter [8], [9]. 

To address micromanipulation challenges in retinal 

surgical procedures, a variety of assistive robots have been 

proposed. Master/slave robots developed for eye surgery 

include the JPL Robot Assisted MicroSurgery (RAMS) 

system [10], the Japanese ocular robot of Ueta et al. [11], 

and the multi-arm stabilizing micromanipulator of Wei et al. 

[12]. Retinal surgery with the da Vinci master/slave robot 

has been investigated [13] and led to the design of a 

Hexapod micropositioner accessory for the da Vinci end-

effector [14]. The Johns Hopkins SteadyHand Eye-Robot 

[15] shares control with an operator who applies force to the 

instrument while it is simultaneously held by the robot arm. 

A unique MEMS pneumatic actuator called the Microhand 
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allows grasping and manipulation of the retina [16]. The 

Microbots of Dogangil et al. aim to deliver drugs directly to 

the retinal vasculature via magnetic navigation [17]. A 

lightweight micromanipulator developed in our lab, Micron, 

is fully handheld and has been used with vision-based 

control to aid retinal surgical procedures [18], [19].  

While classic robot control can provide general behaviors 

such as motion scaling, velocity limiting, and force 

regulation, more specific and intelligent behaviors require 

knowledge of the anatomy. Vision-based control combines 

visual information of the anatomy with robotic control to 

enforce tip constraints, or virtual fixtures, which enact task-

specific behaviors and provide guidance to the surgeon 

during procedure [20], [21]. In retinal vessel cannulation, 

knowledge of the vessel location relative to the instrument 

tip can aid robotic behavior and more effectively help guide 

the robot during injections into the vessel [22], [23]. During 

retinal laser photocoagulation, placing burns on retinal 

vessels should be avoided as this can occlude the vein, 

possibly causing vitreous hemorrhage [7]. However, existing 

methods for vessel detection or retinal registration are not 

suited to real-time operation, preferring accuracy over speed 

for offline use, and do not handle constraints required for 

intraocular surgery, such as robustness to tool occlusion.  

In this paper, we propose an approach to map and localize 

the vasculature of the retina in real time that is robust to tool 

occlusions and variable illumination conditions, for use in 

intraocular surgery. In Section II, related work in 

simultaneous localization and mapping (SLAM) and in 

retinal registration is described. Section III describes our 

approach of using the fast retinal vessel detection of [24] for 

feature extraction, an occupancy grid for mapping [25], and 

iterative closest point (ICP) [26] for localization. In Section 

IV, we evaluate our approach on videos of an in vitro 

eyeball phantom, ex vivo porcine retina, and in vivo human 
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Fig. 1. The proposed mapping and localization algorithm for retinal 

vasculature running in real time on recorded in vivo human retina during a 

retinal peeling with blue die. Video source: http://youtu.be/CTnavOgDsXA 



  

retina (see Fig. 1). Section V concludes with a discussion 

and future work. 

II. RELATED WORK 

A wealth of published work related to localization and 

mapping of retinal vessels exists and can be grouped into 

three general categories: vessel detection, retinal 

registration, and the more general robotic approach of 

simultaneous localization and mapping (SLAM).  

A. Vessel Detection 

Vessel detection is the process of extracting vasculature in 

retinal imagery and often includes calculating the center 

lines, width, and orientation of vessels. One set of methods 

uses local color and intensity information to classify the 

image on a per-pixel basis [27–30]. Another popular 

approach is to search across the image for vessel-like 

structures using matched filters at various locations, scales, 

and orientations [24], [31], [32]. Other algorithms use a bank 

of Gabor wavelets to do a pixel-wise classification of the 

image [33–35]. However, most focus on offline analysis of 

low-magnification, wide-area images such as fundus images 

where accuracy is prioritized over speed. With the exception 

of speed-focused algorithms such as [24], [30], [35] and 

other hardware-accelerated methods [36], [37], most 

algorithms require more than 1 s to run, which is 

insufficiently fast to benefit robotic control loops.  

One notable exception is the rapid exploratory algorithm 

of Can et al. [24] that traces the vasculature, yielding a 

monotonically improving set of partial results suitable for 

real-time deployment at 30 Hz. Can et al. [24] achieves 

high-speed vessel detection through a very fast sparse 

initialization followed by a tracing algorithm. First, a fast 

search for vessel points along a coarse grid is performed to 

initialize a set of seed points on vessels. Each seed point, or 

detected candidate vessel, is then explored in both directions 

along the vessel with an approximate and discretized 

matched filter. At each iteration, the best fit for location, 

orientation, and width of the vessel center line is estimated 

through the evaluation of several matched filters. Using 

orientation estimates to initialize the next iteration, the 

network of vessels in the image is traced without having to 

evaluate areas lacking vessels. Because only a small fraction 

of the total number of pixels in the image is ever processed, 

most of the vessels can be detected very rapidly. However, 

the vessel detections of [24] are noisier and less complete 

than other, more computationally expensive methods. 

B. Retinal Image Registration 

Numerous approaches to registering, mosaicking, and 

tracking exist to take a sequence of retinal imagery and 

calculate relative motion between images. In general, 

approaches match one or more of several features between 

images: key points, vasculature landmarks, or vasculature 

trees. Key point algorithms use image feature descriptors 

such as SIFT [38] to find and match unique points between 

retinal images [39–42]. Vasculature landmark matching 

algorithms find distinctive points based on vessel networks, 

such as vein crossings or bifurcations, and match custom 

descriptors across multiple images [43–45]. Other 

approaches augment or eschew key points and use the shape 

of extracted vessels to match vasculature trees [46], [47]. 

Methods that depend on local key point features [39], 

[40], [42], [48] often result in poor tracking at high 
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Fig. 2. Block diagram detailing the steps in our proposed algorithm that maps and localizes retinal vessels during intraocular surgery. Retinal vessels are 

detected in each frame, localized to a skeletonized map of the occupancy grid with iterative closest point (ICP), and the map probabilities are updated. 



  

magnification because of the lack of texture on the retina 

and the non-distinctive nature of individual points on the 

veins. With optimization, the algorithms of [43], [45] could 

be run in real time on modern hardware; however, they only 

use sparse retinal vessel landmarks, which are relatively few 

or non-existent at high magnifications. More importantly, 

they only perform localization and do not build a map of the 

vasculature. Also, all of these approaches suffer from 

interference caused by the instruments, which both occlude 

existing features in the image and create new, spurious 

features on the moving shaft. Our approach is most similar 

to Stewart et al. [44] which uses a robust, dual-boot ICP 

algorithm to register vasculature landmarks (bifurcations and 

crossovers) and trees (centerlines of the vessels). Stewart et 

al. achieves very accurate results, but our algorithm is 100X 

faster and handles occlusions, dynamic lighting conditions, 

and occlusion while yielding temporally consistent map. 

C. Simultaneous Localization and Mapping (SLAM) 

The problem this paper addresses is similar to a core 

problem addressed in robotics: simultaneous localization and 

mapping, or SLAM. In SLAM, a robot with imprecise, noisy 

localization (e.g., odometry) explores an unknown 

environment with local sensors (such as a laser range-finder) 

with the goal of building a global map and localizing itself 

relative to this map [49]. Using a probabilistic formulation, 

SLAM optimizes a joint probability over the map and the 

localization to simultaneously solve for the true positions of 

the robot and global environmental features. Early solutions 

such as the Extended Kalman Filter (EKF) scaled poorly and 

did not handle ambiguous landmark associations well [49]. 

Recent particle filter approaches such as FastSLAM are 

faster and more robust [50]. With the introduction of 

occupancy grids, which discretize the map and maintain a 

grid of probabilities representing whether each cell is 

occupied, SLAM algorithms scale more effectively [25].  

Comparing SLAM to our problem, the task of building a 

temporally consistent map of vasculature and localizing the 

current observation of vessels to this map exhibits many 

similarities. However, most implementations of SLAM are 

tailored to space-carving sensors such as laser range-finders 

instead of over-head sensors and assume a reasonably good 

robotic motion model, both of which are poor assumptions 

in the problem of retinal localization and mapping.  

III. METHODS 

Our goal is to design an algorithm that maps and localizes 

retinal vessels by merging retinal vessel detection with 

retinal image registration and taking advantage of temporal 

information as seen in SLAM approaches. A fusion of 

methods is needed: fast retinal vessel detections algorithms 

are noisy, incomplete, and do not handle occlusions [24]; 

retinal image registration methods that do build vasculature 

maps are orders of magnitude slower than required for real-

time robotic guidance [46], [47]; and SLAM algorithms are 

not designed or tuned for application in intraocular surgeries. 

Fig. 2 shows a new algorithm that incorporates aspects of 

[24], [44], [49] to perform 30 Hz vasculature mapping and 

localization of retinal video using rapidly-detected vessels as 

features, an occupancy grid for mapping, and iterative 

closest point (ICP) for localization to robustly handle noise, 

tool occlusions, and variable illumination.  

A. Problem Definition 

Given an series of input video frames        1       
over a discretized time period            , the 

algorithm should output a global map in the form of   

vasculature points        1       and the 

corresponding camera viewpoint locations   
     1       of the input video frames in the map. At time 

 , we parameterize the  th
 vasculature point as a 2D location 

  
     

    
  . Because typical retinal surgeries have high 

magnification (often the view is only a few mm
2
 of a 25 m 

diameter eye), we approximate the global map as a plane 

planar section of retina. Similar to many other approaches to 

retinal registration, we assume an affine camera with a 

viewpoint at time   as a 2D translation and rotation    
           from the initial position at    . As seen from 

our results, this 3-DOF motion model is sufficient even with 

fair large field of views of the retina. Observations of vessels 

in the camera at time   are denoted by   . The remainder of 

this section describes the steps that take these video inputs 

and return these mapping and localization outputs.
 

B. Feature Extraction 

Finding features for matching at high magnification is 

difficult. Traditional key point detectors such as SIFT [38] 

Fig. 3. Snapshots of (a) the raw video, (b) feature extraction, (c) mapping, 

and (d) localization of the proposed algorithm at various times during 21 s 

video of porcine retina. Notice that our algorithm builds up the full vessel 
network even with incomplete frame-to-frame detections from [24].  
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or SURF [51] fail to find distinctive points on the textureless 

retina. Likewise, enough vasculature landmarks such as 

crossovers or bifurcations may not be present in sufficient 

numbers to function as good features with high 

magnification. We instead use many anonymous feature 

points extracted from vessel detection algorithms. These 

features cannot be matched individually with a local feature 

descriptor, but can instead be matched as a group based on 

the shape of the vasculature network of vessels. We use the 

highly-efficient, but noisy vessel tracing algorithm of Can et 

al.  [24] to detect vessels, which form the anonymous points 

(see Fig. 3).  

To cull spurious detections on vessel-looking structures 

such as the tip of the instrument or light-pipe, each vessel 

point must pass a color test and bloom proximity test. The 

color test rejects pixels that are too dark or insufficiently red, 

while the bloom proximity test rejects vessels points that are 

too close to large white specular blooms in the image. These 

two simple tests reject many false positives in the detection 

stage and yield the current observation    as 2D points. 

C. Mapping 

A global map that holds the current best estimate of all the 

observed vasculature is maintained using an occupancy grid 

  , which discretizes the map into pixel-sized cells (see Fig. 

3). Each pixel in the occupancy grid represents the 

probability that a vessel occupies that particular spatial 

location. At each time instance  , the current observations    

are transformed to the map with the best estimate of the 

location   
−1 and used to update the probabilities in the 

occupancy map by adding a Gaussian around each detected 

vessel point   
 , as each observation increases the probability 

that a vessel exists at the detected point. The occupancy grid 

has a maximum value to prevent unbounded evidence from 

accumulating. A global decay function decreases the 

probability of all grid cells, allowing vessels that have not 

been detected to vanish after some time. While it might be 

more robust to explicitly consider deformation instead of a 

decay to let the map react to changes, tool/tissue interaction 

is non-rigid and difficult to model, especially in real-time. 

The formulation of the occupancy map reasons about 

uncertainty over time, smoothing noise and handling 

occlusions and deformations. A final map containing the 

centerlines of the most probable vessels is constructed by 

skeletonizing the occupancy grid, which is approximated by 

thresholding, computing the distance transform, calculating 

the Laplacian, and thresholding again. This yields a map of 

2D points    of vessels in the occupancy grid (see Fig. 3). 

D. Localization and Motion Model 

To localize eye-ball motion (which is mathematically 

identical to localizing camera motion), a 3-DOF planar 

motion model is chosen. The problem of localization is then 

to estimate the 2D translation and rotation    between the 

current observations    and the map   , both of which are 

represented by an un-ordered, anonymous set of 2D points. 

Iterative closest point (ICP) is used to find point 

correspondences and calculate the transformation. To 

guarantee real-time performance,    and    are randomly 

sampled to have a maximum of 500 points. To prevent 

spurious detections from causing large mismatches and 

adversely affecting the solution, candidate correspondences 

are only used to estimate the transform if their distance is 

under some threshold. Horn’s quaternion-based method [52] 

is used to estimate the rigid transform instead of an affine or 

similarity transform because scale and shear are negligible. 

Incomplete vessel detections at each frame are noisy, so the 

final ICP estimation of the localization is smoothed using a 

constant-velocity Kalman filter, yielding the localization   . 

The occupancy map is then updated with the newly 

registered vessel points    to close the loop on the algorithm. 

IV. EVALUATION 

We have evaluated the proposed algorithm on a variety of 

videos of recorded in vitro eye phantom, ex vivo porcine 

retina, and in vivo human procedures.  

A. Setup and Timing Performance 

For ease of robotic testing in our lab, color video recorded 

of an eyeball phantom or porcine retina is captured at 30 Hz 

with a resolution of 800x608 at a variety of high 

magnifications (10-25X). Each frame is converted to 

grayscale by selecting the green channel, a common practice 

in many vessel detection algorithms. For efficiency, the 

image is scaled to half-size. On a fast, modern computer 

(Intel i7-2600K), our algorithm implemented in C++ with 
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Fig. 4. Output of the proposed algorithm at various points during a 48 s video of an eye phantom filled with saline and illuminated with a light-pipe. 

 



  

OpenCV [53] runs at 30-40 Hz, including all vessel feature 

detection, occupancy grid mapping, and ICP localization run 

in a single thread. Fig. 1 shows the proposed algorithm 

output on an in vivo human procedure. 

B. Initialization and Convergence Results 

Initialization is fast, requiring less than a second to start 

building the map and only a few seconds to build a full map. 

Fig. 4 shows the output of the algorithm running on a 48 s 

clip of a surgeon tracing a vein in an eyeball phantom. 

Within half a second, the map for visible areas is initialized. 

Because the light-pipe only illuminates portions of the eye at 

a time, the map is built as new vessels become visible. The 

proposed algorithm is able to handle the occlusion of the 

vessels by the instrument shaft and light-pipe. Notice the 

algorithm has been able to accurately map and correctly 

localize even though the entire view has moved, rotated, and 

been occluded by the tool under variable illumination. 

C. Intermediate Detection and Occupancy Grid Results 

Fig. 3 shows the intermediate steps of the algorithm on ex 

vivo porcine retina in an eyeball phantom filled with saline. 

The view is through a vitrectomy lens and illumination is 

provided by the surgeon solely through a light-pipe. 

Incomplete vessel detections are merged over time into the 

occupancy grid to form a full and accurate map after a few 

seconds. Fig. 3(c) shows that the localization is still 

maintained after movement of the eyeball by the surgeon. 

D. Comparison to Vessel Detection Algorithms 

Fig. 5 demonstrates why current vessel tracing algorithms 

are insufficient for robotic guidance in real time surgical 

environments. We compare to three existing vessel tracing 

algorithms on video of human retina in vivo taken in during 

a membrane peel. Our proposed approach provides a more 

complete output than any of the other methods. In particular, 

as examination of Figs. 5(a) and 5(b) shows, our algorithm 

learns over time to ignore the tool shaft, exhibiting more 

robustness to occlusion and illumination. Overall, the 

temporal fusion of the proposed approach increases coverage 

and consistency.  

V. DISCUSSION  

We have presented a new algorithm for retinal mapping 

and localization that operates in real time at 30 Hz. Designed 

to handle the dynamic environment of high-magnification, 

variable illumination retinal surgery, our approach converges 

quickly and is robust to occlusion. In comparisons on retinal 

video, it has proven to be an effective method to temporally 

smooth vessel detections and build a comprehensive map of 

the vasculature. Shortcomings to the algorithm include some 

lag when smoothing jitter with the Kalman filter and loss of 

tracking in the case of large, sudden movements. Future 

improvements should include robust vessel detection, ICP, 

or scan-matching approaches. More effective handling of 

uncertainty during localization and advanced motion models 

(such as spherical) would also be beneficial. Finally, future 

work includes quantitative comparisons to existing methods. 
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