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Abstract—Active compensation of physiological tremor for
handheld micromanipulators depends on fast controland
actuation responses. Because of real-world latensiereal-time
compensation is usually not completely effective aliminating
unwanted hand motion. By modeling tremor, more effetive
cancellation is possible by anticipating future had motion. We
propose a feedforward control strategy that utilize tremor
velocity from a state-estimating Kalman filter. Wedemonstrate
that estimating hand motion in a feedforward contrdler
overcomes real-world latencies in micromanipulatoractuation.
In hold-still tasks with a fully handheld micromanipulator, the
proposed feedforward approach improves tremor rejetton by
over 50%.

I. INTRODUCTION
ICROMANIPULATION during microsurgery and cell

. . . . i r
biological experiments requires precise, defﬁ]

movements. For instance, new retinal operationsudec
direct manipulation of vessels between 50-1&0[1]. With
physiological tremor amplitudes measured at ove) (1
[2], such micromanipulations are extremely difficelven
for skilled surgeons. Advanced robotics technoleggh as
the Johns Hopkins SteadyHand [3] aid surgeons
suppressing tremor with mechanical damping, progjda
smoother, more accurate manipulation

MicroSurgery (RAMS) [4] or the robot-assisted wviretinal
surgery system [5] depend on running tremor congenTs
filters between the haptic input and the output Kfcron,
the micromanipulator built in our lab, is a fullatdheld
micromanipulator with actuators between the haadig the
tip of the instrument [6]. By offsetting the tiplagve to the
handle, Micron is able to compensate for a surgetremor
[7].

A handheld micromanipulator such as Micron has
number of advantages. First, it is small and lighght,
making it easy-to-use and inexpensive. Second, Heddd
instruments are intimately familiar to surgeons,Miagron
can leverage surgeons’ experience and skills wiitfe |
training. Third, small handheld instruments offereaer
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experienc
Master/slave configurations such as the Robot fexbis

safety because the surgeon can more easily oveaide
remove the instrument in cases of malfunction. IKind the
equipment stops working, the surgeon can simplytcbwi
Micron off and use it as a normal handheld instmime

However, handheld micromanipulators pose additional
challenges over purely mechanical damping or méstaee
configurations. Because the handle and tip are execélly
coupled, the actuator between them must operateergt
high control frequencies. If the actuator respdesifor
moving the tip relative to the handle cannot refsdt
enough to counter hand motion, tremor compensadimh
other micromanipulation tasks become degraded eSieal-
world systems exhibit some latency, a pure feedloacirol
system without sufficient bandwidth will result imperfect
compensation of tremor, as evidenced in reportstiual
rors of 10-60um during hold-still tasks [8]. This error
ust be viewed in the context of retinal surgeryere
membranes in the eye are only tens of microns trackl
tearing them can permanently damage eyesight.

To address  actuator latency in handheld
micromanipulators such as Micron, we propose tegrédte a
Kalman filter with feedforward control for increase
l%ppression of tremor. Section Il describes baakuiio
material, including the Kalman filter and the Mioro
ﬁianipulator. In Section Ill, we present our Kalmlier
formulation and feedforward control system. We
demonstrate in Section IV the improved results loé t
proposed feedback+feedforward control system and
conclude in Section V with a discussion of the Itasand
areas of future work.

Il. BACKGROUND

In a handheld micromanipulator, we assume theserise
set pointp® € R3 that is selected as the goal position for the
tip of the micromanipulator. While the focus ofghpaper is

p ator without casig o te th
piezoelectric motors between the handle and tighefinstrument, whic
enable the tip to actuate independently of the leafidind) motion.



not on how to best select the set point, it cagdreerated by

a tremor-compensation filter [7], virtual fixturf®], or other Yie = CieXe 2)

behaviors [9, 10]. Once the set point has beenrgtsteby a whereB, and(, describe the impact of inputson the state

higher-level control system, the low-level contystem x and how observationsare made from the current state

attempts to track the set point with the tip otinment. respectively. Assuming Gaussian noise on the obtensz
Disturbances to the tip arise from a variety ofrsea and the dynamic model characterized by covarianc@s

including vibrations, resonances, or contact witssue. and Q, respectively, the Kalman filter optimally estirest

However, the largest disturbance in a micromantpula the system’s state at each time step:

system is generally hand motion, which includeshbot

voluntary movement and involuntary tremor. Typigall Xy = A1 + Bk ©)

tremor is treated as the disturbance, but voluntaogion R r

can be thought of as a disturbance too, such asafewhen P = ArPr1 A" + Qy ()

the set point is being generated from virtual figti or ~ ~

motion scaling. For the purposes of this papercamsider Vi = 7z — HiXye ®)

all hand motion that does not coincide with the geint R

motion to be a disturbance to the control system. Sk = Hi Py + Ry (6)

A. Feedforward Control K, = P.HTS7? 7)
In feedback systems, disturbances are handled es th

cause the outpu_t to drift away from the set pd!m's error is X = Rp + KV (8)

then fed back into the control system to bring theput

back to the set point. One popular feedback comajppltoach P, = (I — K H)B, (9)

is PID (Proportional, Integral, and Derivative) mgion the ) )
error. However, feedback control can only react t¥here (3-4) are known as the predict step, whioh the
disturbances after they have so affected the systata that dynamic model and inputs to the system to predietstate
the deviation from the goal is noticeable. Thimoeis then % at the next time step. Equations (5-9) are knowrthe
exacerbated by latencies in actuation as it mag saveral UPdate steps, where the residual between the pedditate
cycles before the actuators respond to eliminaesttor. X and the measured statds used to calculate the Kalman
If the disturbance is predictable or correlatechveibme 9ain K, which optimally mixes between the measurements
other predictab|e variable (eg gravity’ fr|Ct|on) and the dynamiC model to y|e|d the best estimatahef
feedforward control can couple the set point diyett the current statec. P is the error covariance that represents the
control variable. By modeling the disturbance atsdeffect ~accuracy of the state estimateThe Kalman filter has been
on the system, control effort can be applied befemor Widely successful in a number of different appiicas.
occurs. To compensate for latencies in the actuathort-
term future predictions from the model can be usedrive
the actuators in anticipation of how the disturleaneill
affect the system. When suppressing tremor in alteld
micromanipulator, the hand motion that does notespond
to the set-point motion is the disturbance. Suctferward
rejection of tremor requires good estimation of hbot
observed and unobserved motion states of the system

C. Micron Micromanipulator

Micron (Figure 1) is a 3 degree of freedom (DOHR)|yf
handheld micromanipulator [6, 7] with three pieswmtlic
actuators mechanically coupling the tip and harufléhe
instrument. By actuating these motors, the instntnti is
able to move with respect to the handle in a 2x2x1 range
of motion to cancel tremor, snap to virtual fixtsi{8], apply
grids of laser burns [9], or perform other inteig
B. Kalman Filter behaviors [10]. High-rate positioning informations i

Optimal estimation of the current state of a systena achieved with low-latency optical tracking hardwaremed
wide field [11], but one of the most popular stastimators ASAP [14]. Using three pulsed LEDs on the tip o th
is the Kalman filter [12, 13]. A main assumption tbfe instrument and one on the handle, two Position iBeas
Kalman filter is that observations, or sensor regsljiz of a Detectors (PSDs) at a $@ngle triangulate the frequency-
system follow some dynamics. The current state haf t modulated LEDs at 2 kHz for full 6 DOF positionin§ the
Systemx e R" is the n minimum number of variables tlp and handle with <1Qm RMS error. Micron is Operated
necessary to predict future behavior of the systdnthe under a surgical microscope equipped with cameoas f
system is linear, states evolve according to theadhyc Vision-based surgical control and post-procedurustion
model A of the system and with the inputsto the system (see Figure 2).

(i.e., actuation). More formally, we can represtg state
transitions discretely at time stéms: lll.  METHODS

By using a Kalman filter for state estimation ofttodhe
handle and tip, we propose a feedforward contnategy
that anticipates hand motion to more effectivelpmess

X = ApX_1 + Bruy 1)



representations for orientation results in fastdcudations,
especially in the slow inverse calculation of (7Third,
guantitative analysis revealed that in typical essgenarios,
the difference between estimations using Euler angl
representations and those using quaternions isigiggl
We use the constant angular velocity model for the

orientation:
ol =[5 10 (11)

with © =[6,6]" representing the orientation angle and
angular velocity in the world frame. Denoting thets
transitions of position and orientation 48 andA° and the
full 15 state vectox = [Py, Py, Py, 04,0y, 0,], we can build
the full 6-DOF state transition in block-diagonairh:

— p -
: [PX] Ay 03 03 [Px]
Fig. 2. Experimental setup: (a) Micron (b) Opergtiricroscope (¢ Py 0, Al‘y7 0; 0oy Py
ASAP optical trackers (d) Stereo cameras (e) Ege/fdantom. P P P
Z — 03 03 AZ Z (12)

tremor in handheld micromanipulators. Ox A% 0, 0, Ox

L . Oy 0 0, 42 0,[|%
A. State Estimation with Kalman Filter [@ZJ 6x9 vz [@ZJ B

kL 0, 0, A3l k-1

Full 6-DOF pose information for the tip and hande
calculated from the LEDs via triangulation and the Measurements at each time-step are represented as
application of the closed-form Horn calculation [ the Z = [Px, Py, Pz Ox,0y,8z]. Measurement and process
recovered 3D positions of the LEDs. Because the2dMz covariances are set t® = [103,10% 102,103,103 10?] *
pose data is noisy and numerically calculating eigJoor Igxs and @ = 107! = I;5,45, respectively. Because the tip
acceleration data would be extremely noisy, we mse and handle are only loosely coupled, separate Kaliittars
Kalman filter [12, 13] for complete state estimatiof the are used for state estimation of the tip and hatalleduce
pose of Micron’s tip and handle position. We choadmear computational requirements. For the handle, no hand
Kalman filter similar to [16] since the sample rai® actuation input is available, so control inpgyt= 0. For the
sufficiently high to well approximate the nonlinges in tip Kalman filter, the forward kinematigsand modelB of
the system. Furthermore, recent work has shown thdie actuators are calculated once from a ~30s ratbin
nonlinear versions such as the Extended or Unsgentgrocedure. Because the actuators are in the badhefwhile
Kalman filters have difficulties modeling tremor ttvi all other state variables are in the world franhe, actuator
nonlinear harmonic models [17]. Because the hantiomo input u, is first rotated into the world frame by the cuntre

contains low-frequency voluntary movement (<1 szrientatioan estimated from the sta[éx Oy 1 eZk]T:
combined with involuntary tremor motions (10-20 Haje T

use a constant acceleration motion representedhdstate Xk = Axg_1 + BRuy (13)
transition: giving us a prediction model that takes into ac¢dngth the
b 1 dt Y%dt?][P internal dynamics of the system and any actuation.
[f’] = [0 1 dt ] [P] (10) By integrating system dynamics, actuator models] an
pl, 0 0 1 pl,_, measurements, the Kalman filter estimates of thatipa,

. _ . LT . . . velocity, acceleration, orientation, and angulaloeiy of
with P = [p,p,p]" representing the position, velocity, andboth the tip and handle of Micron.

acceleration of the system.
To represent orientation, we investigated quatesiiout B. Feedforward Control

used Euler angles instead for the following reaséist, During handheld operation, unwanted movement of the

Micron’s orientation only changes slightly duringhand causes the i to deviate from the set-point gqa.

operations, usually by only 10-20s0 gimbal lock is not an |nverse kinematicg™ translate measured erroe= p° — p*

issue. Second, Euler angles’ representation witteeth into corrective actuation with a PID controller,ngeating

variables instead of quaternion’s overrepresentedr f feedback controk:

variables leads to easier calculations, as issués o

heteroscedasticity and re-normalization do notearidore Ups = KpJle + K, [ ] le + K, i]—le (14)

importantly, since the Kalman filter must be rurRatHz in d

a realtime operating system, using three variablghere K, K;, and K, are the proportional, integral, and
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Fig. 3. (Top) State estimation of hand motion byrkan Filter compzed to raw measurements. (Bottom) Kalman filtemestes of Micron’s tip positic
during a hol-still task with feedback control. Notice the gaagteement between the hand velocity and the ezsor at the tip position.
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derivative gains.
Since the tip of Micron is mechanically tied to th@ndle IV. RESULTS
via actuators, we use a straightforward processeintiht In this section, we present results of the Kalmiterf

assumes the tip velocity® is composed of the handlestate estimation of Micron and its effect on tremor
velocity p™ plus the control effort of the actuatars,: suppression. Using the state-estimation to antieip@mor,
we use implement and test feedforward control ild4still
tasks with Micron, our handheld micromanipulator.

From (15), we see the resulting ereoin the output tip after 5  gate Estimation
feedback control is proportional to the rate ofrde of the Figure 3 shows the Kalman filter state estimatiérine

hand position, orp”. Intuitively, the tip velocity should pangie position and velocity for a one second tatee of
match the set-point velocity®, giving us a feedforward (he x axis. The Kalman filter is able to accuratelyd
error termeg: smoothly estimate not only position, but higher esrd
epp = ph — pS (16) de_rivatives while ig_noring significant amounts oéns_or
noise. Also shown is the agreement between thertipr
Assuming the set-point velocity is negligibje®(>> ps ), our under PID feedback-only control and the velocityhiat
error ey reduces to hand velocity” and feedforward €xperimentally validates (16). The Y and Z axispiisare
control uzz can be integrated into the system with a PISimilar to the figures shown for the X axis.

controller similar to (14): B. Experimental Protocol

Tests were performed with Micron under a board-
approved protocol to evaluate the Kalman filtertesta
estimation and the tremor suppression effects & th
feedback+feedforward controller. All experiments reve
performed with a single individual familiar with ktion but
without surgical experience. The task of interegtald-still,

U = Upg + AUpp (18) in which the operator attempts to hold the tip wigéss at a
erd 3D set point. Visual cues are presented ¢odjperator

n a 3D monitor to help the operator avoid driftiog far

rom the set point, which would saturate the adxsatTo
alleviate operator bias, controllers are executedradom in
5 s intervals without notifying the operator.

pt = p.h + Upp (15)

upp = KpJ 7 'p" + K, [ 70" + K Eph ()

Both feedback and feedforward inputs are appliegdaath
time step, with the aggressiveness of the feedfi@heantrol
inputs defined by:

Thus, to more robustly maintain a set point, han
movements estimated by the Kalman filter can b
anticipated as they occur instead of after causingy.
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Fig. 4. Comparison of the feedthavs. feedback+feedforward controller for tremoppression (top: transverse, bottom: axial). Tharoder is swappe
out dynamically at= 1 s . Although tremor suppression is not completefgetive in either case, the addition of the feedfimd component is clearl
beneficial.

Ground truth for the tip position is constructed lbyw- handheld tremor suppression, we present the regilts
passing the tip position with a 100 Hz bi-direciibrzero- Micron maintaining a set point in the absence of hand
lag 2 order Butterworth filter. Because manipulatomotion and tremor; this is achieved by clamping hiaedle
resonances begin around 100 Hz, this serves assarrable with rubber in a vise.
ground truth. Furthermore, the zero-lag low-palierfis a The closed-loop frequency response of the new
more unbiased estimator of the ground truth tharkithiman feedback+feedforward controller compared to theeliaes
filter because the system feeds the output of thémkn controller is shown in Figure 6. A sine wave chgignal
filter back into the control system. Combined withe sweeping 1 Hz to 1 kHz is injected into the posethef
actuator model, this could introduce biases int@ thinstrument during handheld operation. The tip posit
estimation. Each controller is evaluated by cakindgpgRMS response to the injected stimulus is recorded maary runs
error between the ground truth tip position andgeepoint to average out handheld motion. Notice the

goal. feedback+feedforward controller does significantgtter
C. Feedforward Tremor Suppression
. . .. 5r = = = = Handheld Feedback Control
When feedforward control with Kalman filter estiriwat ot . Handheld Feedback +Feediomward Control

is added to the feedback controller, more tremor N Clamped (no tremor) Feedback Control
suppressed. Figure 4 demonstrates the additiopptession s : :
by showing the activation of the feedback+feedfodva
controller during a hold still task. Because of arfect
estimation, actuation latencies, and other noniities,
perfect cancellation is not achieved; however, trecaused
disturbances of 10-2Qum magnitudes can generally be

-15

Power/frequency (dB/Hz)

reduced to 5-1Gum with the feedforward approach. Table | op
lists the feedback+feedforward controller as redgcihe OREE
RMS error by 56.7% as compared to only using tedifack

controller. Figure 5 shows a power spectrum ofettrer for 10
each controller. The feedback+feedforward controlle -
performs better at low frequencies, and peaks sdraew Fig. 5. Power spectrum of the two controllers under haitti conditions

S . the baseline controller and the fforward controller. For comparison ti
around 60 Hz. However, this is not a concern, ag Witle  yemofree case, the baseline feedback controller opeyati a clampe

energy exists at this frequency. As a best casedbdor rubber vise is shown alst

Frequency (Hz)



TABLE |
ERROR OFCONTROLLERS

=
o

o

RMS Error  Improvement Over

Method (um) Baseline (%) g "
n £ 7
Baéle“ne Feedback 7.9 . 8 = = = Handheld Feedback Control
lamped (No Tremor) 14 y 20 Handheld Feedback+Feedforward Control|
Feedback+Feedforward 34 56.7

I
()
o

10° 10
Frequency (Hz)

Mean performance measured with Root Mean SquareS)RdA the
error signal represented as percent improvement dhe baseline
feedback-only controller. Best attainable tremoppsession should be
approximated by the case where Micron is clamped ivise (i.e. no
tremor).

N
3
o

=
@
(=]

than the the feedback-only controller in the lowe
frequencies where tremor is most strongly exhibitsid10
Hz, where peak tremor power occurs, the attenuatidhe 90 . .
response is -7 dB. By the Bode Integral Theoremewect 10 Frequency%g; 10
to see an increase in the response at higher fretpse

Fig. 6. Frequency response of the two controllerslen handhe

corresponding to the de_crease aj[ lower frequenwhﬂ_;h conditions: the baseline feedback controlled the feedback+feedforwe
we do. However, as evidenced in the power spectirum controller. Notice the additional attenuation ofcerat low frequencies

Figure 5, there is significantly less energy in gystem at the £-20 Hz tremor range. This frequency response ighitransverse a
these higher frequencies so overall the system dsrates °f "€ manipulator; the lateral response is sim
a net gain in tremor compensation.
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