
 

 

  

Abstract—Active compensation of physiological tremor for 
handheld micromanipulators depends on fast control and 
actuation responses. Because of real-world latencies, real-time 
compensation is usually not completely effective at eliminating 
unwanted hand motion. By modeling tremor, more effective 
cancellation is possible by anticipating future hand motion. We 
propose a feedforward control strategy that utilizes tremor 
velocity from a state-estimating Kalman filter. We demonstrate 
that estimating hand motion in a feedforward controller 
overcomes real-world latencies in micromanipulator actuation. 
In hold-still tasks with a fully handheld micromanipulator, the 
proposed feedforward approach improves tremor rejection by 
over 50%. 

  

I. INTRODUCTION 

ICROMANIPULATION during microsurgery and cell 
biological experiments requires precise, deft 

movements. For instance, new retinal operations include 
direct manipulation of vessels between 50-150 µm [1]. With 
physiological tremor amplitudes measured at over 100 µm 
[2], such micromanipulations are extremely difficult even 
for skilled surgeons. Advanced robotics technology such as 
the Johns Hopkins SteadyHand [3] aid surgeons by 
suppressing tremor with mechanical damping, providing a 
smoother, more accurate manipulation experience. 
Master/slave configurations such as the Robot Assisted 
MicroSurgery (RAMS) [4] or the robot-assisted vitreoretinal 
surgery system [5] depend on running tremor compensation 
filters between the haptic input and the output tip. Micron, 
the micromanipulator built in our lab, is a fully handheld 
micromanipulator with actuators between the handle and the 
tip of the instrument [6]. By offsetting the tip relative to the 
handle, Micron is able to compensate for a surgeon’s tremor 
[7].  

 A handheld micromanipulator such as Micron has a 
number of advantages. First, it is small and lightweight, 
making it easy-to-use and inexpensive. Second, handheld 
instruments are intimately familiar to surgeons, so Micron 
can leverage surgeons’ experience and skills with little 
training. Third, small handheld instruments offer greater 
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safety because the surgeon can more easily override or 
remove the instrument in cases of malfunction. Finally, if the 
equipment stops working, the surgeon can simply switch 
Micron off and use it as a normal handheld instrument. 

However, handheld micromanipulators pose additional 
challenges over purely mechanical damping or master/slave 
configurations. Because the handle and tip are mechanically 
coupled, the actuator between them must operate at very 
high control frequencies. If the actuator responsible for 
moving the tip relative to the handle cannot react fast 
enough to counter hand motion, tremor compensation and 
other micromanipulation tasks become degraded. Since real-
world systems exhibit some latency, a pure feedback control 
system without sufficient bandwidth will result in imperfect 
compensation of tremor, as evidenced in reported residual 
errors of 10-60 µm during hold-still tasks [8]. This error 
must be viewed in the context of retinal surgery, where 
membranes in the eye are only tens of microns thick, and 
tearing them can permanently damage eyesight.   

To address actuator latency in handheld 
micromanipulators such as Micron, we propose to integrate a 
Kalman filter with feedforward control for increased 
suppression of tremor. Section II describes background 
material, including the Kalman filter and the Micron 
manipulator. In Section III, we present our Kalman filter 
formulation and feedforward control system. We 
demonstrate in Section IV the improved results of the 
proposed feedback+feedforward control system and 
conclude in Section V with a discussion of the results and 
areas of future work.  

II. BACKGROUND 

In a handheld micromanipulator, we assume there is some 
set point �� ∈ �� that is selected as the goal position for the 
tip of the micromanipulator. While the focus of this paper is 
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Fig. 1. Micron micromanipulator without casing to illustrate the 
piezoelectric motors between the handle and tip of the instrument, which 
enable the tip to actuate independently of the handle (hand) motion. 



 

 

not on how to best select the set point, it can be generated by 
a tremor-compensation filter [7], virtual fixtures [8], or other 
behaviors [9, 10]. Once the set point has been generated by a 
higher-level control system, the low-level control system 
attempts to track the set point with the tip of instrument.  

Disturbances to the tip arise from a variety of sources 
including vibrations, resonances, or contact with tissue. 
However, the largest disturbance in a micromanipulator 
system is generally hand motion, which includes both 
voluntary movement and involuntary tremor. Typically, 
tremor is treated as the disturbance, but voluntary motion 
can be thought of as a disturbance too, such as the case when 
the set point is being generated from virtual fixtures or 
motion scaling. For the purposes of this paper, we consider 
all hand motion that does not coincide with the set point 
motion to be a disturbance to the control system. 

A. Feedforward Control 

In feedback systems, disturbances are handled as they 
cause the output to drift away from the set point; this error is 
then fed back into the control system to bring the output 
back to the set point. One popular feedback control approach 
is PID (Proportional, Integral, and Derivative) gains on the 
error. However, feedback control can only react to 
disturbances after they have so affected the system state that 
the deviation from the goal is noticeable. This error is then 
exacerbated by latencies in actuation as it may take several 
cycles before the actuators respond to eliminate the error.  

If the disturbance is predictable or correlated with some 
other predictable variable (e.g. gravity, friction), 
feedforward control can couple the set point directly to the 
control variable. By modeling the disturbance and its effect 
on the system, control effort can be applied before error 
occurs. To compensate for latencies in the actuation, short-
term future predictions from the model can be used to drive 
the actuators in anticipation of how the disturbance will 
affect the system. When suppressing tremor in a handheld 
micromanipulator, the hand motion that does not correspond 
to the set-point motion is the disturbance. Such feedforward 
rejection of tremor requires good estimation of both 
observed and unobserved motion states of the system.  

B. Kalman Filter 

Optimal estimation of the current state of a system is a 
wide field [11], but one of the most popular state estimators 
is the Kalman filter [12, 13]. A main assumption of the 
Kalman filter is that observations, or sensor readings, � of a 
system follow some dynamics. The current state of the 
system � ∈ ℝ� is the 	 minimum number of variables 
necessary to predict future behavior of the system. If the 
system is linear, states evolve according to the dynamic 
model 
 of the system and with the inputs � to the system 
(i.e., actuation). More formally, we can represent the state 
transitions discretely at time step �	as: 

�� = 
����� + ���� (1) 

�� = ���� (2) 

where �� and �� describe the impact of inputs � on the state 
� and how observations � are made from the current state �, 
respectively. Assuming Gaussian noise on the observations � 
and the dynamic model 
 characterized by covariances � 
and �, respectively, the Kalman filter optimally estimates 
the system’s state � at each time step:  
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where (3-4) are known as the predict step, which use the 
dynamic model and inputs to the system to predict the state 
�� at the next time step. Equations (5-9) are known as the 
update steps, where the residual between the predicted state 
�� and the measured state � is used to calculate the Kalman 
gain �, which optimally mixes between the measurements 
and the dynamic model to yield the best estimate of the 
current state �. � is the error covariance that represents the 
accuracy of the state estimate �. The Kalman filter has been 
widely successful in a number of different applications. 

C. Micron Micromanipulator 

Micron (Figure 1) is a 3 degree of freedom (DOF), fully 
handheld micromanipulator [6, 7] with three piezoelectric 
actuators mechanically coupling the tip and handle of the 
instrument. By actuating these motors, the instrument tip is 
able to move with respect to the handle in a 2x2x1 mm range 
of motion to cancel tremor, snap to virtual fixtures [8], apply 
grids of laser burns [9], or perform other intelligent 
behaviors [10]. High-rate positioning information is 
achieved with low-latency optical tracking hardware named 
ASAP [14]. Using three pulsed LEDs on the tip of the 
instrument and one on the handle, two Position Sensitive 
Detectors (PSDs) at a 60° angle triangulate the frequency-
modulated LEDs at 2 kHz for full 6 DOF positioning of the 
tip and handle with <10 µm RMS error. Micron is operated 
under a surgical microscope equipped with cameras for 
vision-based surgical control and post-procedure evaluation 
(see Figure 2).  

III.  METHODS 

By using a Kalman filter for state estimation of both the 
handle and tip, we propose a feedforward control strategy 
that anticipates hand motion to more effectively suppress 



 

 

tremor in handheld micromanipulators. 

A. State Estimation with Kalman Filter 

Full 6-DOF pose information for the tip and handle is 
calculated from the LEDs via triangulation and the 
application of the closed-form Horn calculation [15] on the 
recovered 3D positions of the LEDs. Because the raw 2 kHz 
pose data is noisy and numerically calculating velocity or 
acceleration data would be extremely noisy, we use a 
Kalman filter [12, 13] for complete state estimation of the 
pose of Micron’s tip and handle position. We choose a linear 
Kalman filter similar to [16] since the sample rate is 
sufficiently high to well approximate the nonlinearities in 
the system. Furthermore, recent work has shown that 
nonlinear versions such as the Extended or Unscented 
Kalman filters have difficulties modeling tremor with 
nonlinear harmonic models [17]. Because the hand motion 
contains low-frequency voluntary movement (<1 Hz) 
combined with involuntary tremor motions (10-20 Hz), we 
use a constant acceleration motion represented by the state 
transition: 

$��%�&	'� � $1 )* ½)*,0 1 )*0 0 1 ' $��%�& 	'��� (10) 

with � � .�, �%, �&0� representing the position, velocity, and 
acceleration of the system. 

To represent orientation, we investigated quaternions but 
used Euler angles instead for the following reasons. First, 
Micron’s orientation only changes slightly during 
operations, usually by only 10-20°, so gimbal lock is not an 
issue. Second, Euler angles’ representation with three 
variables instead of quaternion’s overrepresented four 
variables leads to easier calculations, as issues of 
heteroscedasticity and re-normalization do not arise. More 
importantly, since the Kalman filter must be run at 2 kHz in 
a real-time operating system, using three variable 

representations for orientation results in faster calculations, 
especially in the slow inverse calculation of (7). Third, 
quantitative analysis revealed that in typical usage scenarios, 
the difference between estimations using Euler angle 
representations and those using quaternions is negligible. 
We use the constant angular velocity model for the 
orientation: 

122%3� � 11 )*0 1 3 122% 3��� (11) 

with Θ � 52, 2%6� representing the orientation angle and 
angular velocity in the world frame. Denoting the state 
transitions of position and orientation as 
7 and 
8 and the 
full 15 state vector � � .�9 , �: , �9, Θ; , Θ: , Θ;0, we can build 
the full 6-DOF state transition in block-diagonal form: 
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Measurements at each time-step are represented as � � .�9 , �H , �I, 29 , 2:, 2;0. Measurement and process 
covariances are set to � � .10�, 10�, 10,, 10�, 10�, 10,0 ∗!KEK and � � 10�� ∗ !�LE�L, respectively. Because the tip 
and handle are only loosely coupled, separate Kalman filters 
are used for state estimation of the tip and handle to reduce 
computational requirements. For the handle, no hand 
actuation input is available, so control input �� � 0. For the 
tip Kalman filter, the forward kinematics M and model � of 
the actuators are calculated once from a ~30s calibration 
procedure. Because the actuators are in the body frame while 
all other state variables are in the world frame, the actuator 
input �� is first rotated into the world frame by the current 

orientation �� estimated from the state 529,�, 2:,�, 2;,�6�: 

��� � 
���� � ����� (13) 

giving us a prediction model that takes into account both the 
internal dynamics of the system and any actuation. 

By integrating system dynamics, actuator models, and 
measurements, the Kalman filter estimates of the position, 
velocity, acceleration, orientation, and angular velocity of 
both the tip and handle of Micron.  

B. Feedforward Control 

During handheld operation, unwanted movement of the 
hand causes the tip �N to deviate from the set-point goal ��. 
Inverse kinematics M�� translate measured error O � �� � �N 
into corrective actuation with a PID controller, generating 
feedback control �PQ: 

�PQ � �RM��O � �ST M��O � �U ))* M��O (14) 

where �R, �S, and �U are the proportional, integral, and 

Fig. 2.  Experimental setup: (a) Micron (b) Operating microscope (c) 
ASAP optical trackers (d) Stereo cameras (e) Eye/face phantom. 
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derivative gains. 
Since the tip of Micron is mechanically tied to the handle 

via actuators, we use a straightforward process model that 
assumes the tip velocity �N%  is composed of the handle 

velocity �V%  plus the control effort of the actuators �PQ: 

�N% � �V% � �PQ (15) 

From (15), we see the resulting error O in the output tip after 
feedback control is proportional to the rate of change of the 

hand position, or �V% . Intuitively, the tip velocity should 
match the set-point velocity ��% , giving us a feedforward 
error term OPP: 

OPP � �V% � ��%  (16) 

Assuming the set-point velocity is negligible (�V% ≫ ��%  ), our 

error OPP reduces to hand velocity �V%  and feedforward 
control �PP can be integrated into the system with a PID 
controller similar to (14): 

�PP � �RM���V% � �ST M���V% � �U ))* �V%  (17) 

Both feedback and feedforward inputs are applied at each 
time step, with the aggressiveness of the feedforward control 
inputs defined by Y: 

� � �PQ � Y�PP (18) 

Thus, to more robustly maintain a set point, hand 
movements estimated by the Kalman filter can be 
anticipated as they occur instead of after causing error. 

IV.  RESULTS 

In this section, we present results of the Kalman filter 
state estimation of Micron and its effect on tremor 
suppression. Using the state-estimation to anticipate tremor, 
we use implement and test feedforward control in hold-still 
tasks with Micron, our handheld micromanipulator. 

A. State Estimation 

Figure 3 shows the Kalman filter state estimation of the 
handle position and velocity for a one second time slice of 
the X axis. The Kalman filter is able to accurately and 
smoothly estimate not only position, but higher order 
derivatives while ignoring significant amounts of sensor 
noise. Also shown is the agreement between the tip error 
under PID feedback-only control and the velocity, which 
experimentally validates (16). The Y and Z axis graphs are 
similar to the figures shown for the X axis.  

B. Experimental Protocol 

Tests were performed with Micron under a board-
approved protocol to evaluate the Kalman filter state 
estimation and the tremor suppression effects of the 
feedback+feedforward controller. All experiments were 
performed with a single individual familiar with Micron but 
without surgical experience. The task of interest is hold-still, 
in which the operator attempts to hold the tip motionless at a 
fixed 3D set point. Visual cues are presented to the operator 
on a 3D monitor to help the operator avoid drifting too far 
from the set point, which would saturate the actuators. To 
alleviate operator bias, controllers are executed at random in 
5 s intervals without notifying the operator.  

Fig. 3. (Top) State estimation of hand motion by Kalman  Filter compared to raw measurements. (Bottom) Kalman filter estimates of Micron’s tip position 
during a hold-still task with feedback control. Notice the good agreement between the hand velocity and the error seen at the tip position.  
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Ground truth for the tip position is constructed by low-
passing the tip position with a 100 Hz bi-directional, zero-
lag 2nd order Butterworth filter. Because manipulator 
resonances begin around 100 Hz, this serves as a reasonable 
ground truth. Furthermore, the zero-lag low-pass filter is a 
more unbiased estimator of the ground truth than the Kalman 
filter because the system feeds the output of the Kalman 
filter back into the control system. Combined with the 
actuator model, this could introduce biases into the 
estimation. Each controller is evaluated by calculating RMS 
error between the ground truth tip position and the set point 
goal. 

C. Feedforward Tremor Suppression 

When feedforward control with Kalman filter estimation 
is added to the feedback controller, more tremor is 
suppressed. Figure 4 demonstrates the additional suppression 
by showing the activation of the feedback+feedforward 
controller during a hold still task. Because of imperfect 
estimation, actuation latencies, and other nonlinearities, 
perfect cancellation is not achieved; however, tremor-caused 
disturbances of 10-20 µm magnitudes can generally be 
reduced to 5-10 µm with the feedforward approach. Table I 
lists the feedback+feedforward controller as reducing the 
RMS error by 56.7% as compared to only using the feedback 
controller. Figure 5 shows a power spectrum of the error for 
each controller. The feedback+feedforward controller 
performs better at low frequencies, and peaks somewhat 
around 60 Hz. However, this is not a concern, as very little 
energy exists at this frequency. As a best case bound for 

handheld tremor suppression, we present the results of 
Micron maintaining a set point in the absence of any hand 
motion and tremor; this is achieved by clamping the handle 
with rubber in a vise. 

The closed-loop frequency response of the new 
feedback+feedforward controller compared to the baseline 
controller is shown in Figure 6. A sine wave chirp signal 
sweeping 1 Hz to 1 kHz is injected into the pose of the 
instrument during handheld operation. The tip position 
response to the injected stimulus is recorded over many runs 
to average out handheld motion. Notice the 
feedback+feedforward controller does significantly better 

Fig. 4. Comparison of the feedback vs. feedback+feedforward controller for tremor suppression (top: transverse, bottom: axial). The controller is swapped 
out dynamically at � 1	Z . Although tremor suppression is not completely effective in either case, the addition of the feedforward component is clearly 
beneficial.  
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Fig. 5. Power spectrum of the two controllers under handheld conditions: 
the baseline controller and the feedforward controller. For comparison to a 
tremor-free case, the baseline feedback controller operating in a clamped 
rubber vise is shown also.   
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than the the feedback-only controller in the lower 
frequencies where tremor is most strongly exhibited. At 10 
Hz, where peak tremor power occurs, the attenuation in the 
response is -7 dB. By the Bode Integral Theorem, we expect 
to see an increase in the response at higher frequencies 
corresponding to the decrease at lower frequencies, which 
we do. However, as evidenced in the power spectrum in 
Figure 5, there is significantly less energy in the system at 
these higher frequencies so overall the system demonstrates 
a net gain in tremor compensation.   

V. DISCUSSION 

We have demonstrated that applying a Kalman filter for 
state estimation of hand motion in a feedforward controller 
can produce superior tremor suppression. A Kalman filter 
for both the tip and the handle of Micron is run at 2 kHz to 
fully estimate the position, velocity, acceleration, 
orientation, and angular velocities.  By modeling the effect 
of physiological tremor on the process plant, feedforward 
control uses estimated handle velocity to anticipate and 
reject extraneous hand motions. Experiments show a 
reduction in RMS error of more than half, which 
corresponds to approximately -7 dB rejection ratio. This 
significantly improves accuracy around tiny anatomy such as 
retinal vessels and reduces trauma to surrounding tissue 
caused by tremor. In the future, we plan on analyzing lower-
level current control on the piezoelectric motors, examining 
vibration estimations of the sensors, and incorporating 
tremor prediction algorithms [18-20]. 
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Fig. 6. Frequency response of the two controllers under handheld 
conditions: the baseline feedback controller and the feedback+feedforward 
controller. Notice the additional attenuation of error at low frequencies in 
the 5-20 Hz tremor range. This frequency response is for the transverse axis 
of the manipulator; the lateral response is similar.  
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TABLE I 
ERROR OF CONTROLLERS 

Method 
RMS Error 

(µm) 
Improvement Over 

Baseline (%) 

Baseline Feedback 7.9 - 
    Clamped (No Tremor) 1.4 - 
Feedback+Feedforward 3.4 56.7 

Mean performance measured with Root Mean Square (RMS) of the 
error signal represented as percent improvement over the baseline 
feedback-only controller. Best attainable tremor suppression should be 
approximated by the case where Micron is clamped in a vise (i.e. no 
tremor).  
 


