

AUTOMATICALLY DETERMINING CONSEQUENCES

OF UNEXPECTED EVENTS

by

Brian C. Becker

A thesis submitted in partial fulfillment of the requirements
for the Honors in the Major Program

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

and in The Burnett Honors College
at the University of Central Florida

Orlando, Florida

Spring Term 2007

Thesis Chair: Avelino J. Gonzalez, Ph.D., P.E.

© 2007 Brian C. Becker

ABSTRACT

Planning is essential for an action-oriented, goal-driven software agent. In order to

achieve a specific goal, an agent must first generate a plan. However, as the poet

Robert Burns once noted, the best laid plans can often go awry. Each step of the

plan is subject to the possibility of failure, a truth particularly relevant in the real-

world or a realistic simulated environment. External influences not originally

considered can often cause sudden, unanticipated consequences during the

execution of the plan. When this happens, an intelligent software agent needs to

answer the following important questions: What are the consequences of this event

on its plan? How will the plan be affected? Can the plan be adjusted to

accommodate the unanticipated effects? The research described in this thesis

develops a model whereby intelligent agents can automatically determine

consequences of unplanned events. Such a model provides agents with the ability

to detect if and how events will affect the plan. This allows agents to subsequently

modify the plan to mitigate unfavorable consequences or take advantage of

favorable consequences.

iv

DEDICATION

To God,

Who knows it all anyhow

v

ACKNOWLEDGMENTS

I wish to express my heartfelt thanks to my advisor, Dr. Avelino Gonzalez, for his

extensive support throughout my undergraduate career. Dr. Keith Garfield has

been indispensable with his management of the project and his keen insights

through our brainstorming sessions. Many thanks go to Dr. Michael Georgiopoulos

and Dr. Annie Wu for serving on my thesis committee. I am especially grateful for

the financial support from the Army Research Laboratory and the Institute of

Simulation & Training (IST) to fund this project.

I also thank my fellow thesis/dissertation writers Enrique G. Ortiz, Chris Moriarty,

Cameron Akridge, Gary Stein, and Jimmy Secretan for words of encouragement

and cracking the whip when my dedication wavered. Special thanks go to Jorge

Cham and his “Piled Higher & Deeper” comic strip for keeping me morosely

entertained during the sometimes all too serious and arduous process of writing a

thesis.

Finally, I am greatly indebted to my parents who put up with me for these long

years.

vi

TABLE OF CONTENTS

Abstract ... iii

Dedication .. iv

Acknowledgments .. v

Table of Contents ... vi

List of Figures ... xii

List of Tables .. xiv

List of Abbreviations .. xv

CHAPTER 1: Introduction ... 1

CHAPTER 2: Background ... 5

2.1 Historical Perspective ... 5

2.1.1 What Is Planning? .. 6

2.1.1.1 Model of the Future ... 7

2.1.1.2 Hierarchical Planning .. 8

2.1.2 What Is an Agent? .. 8

2.1.3 What Is Replanning? .. 9

2.1.4 Multi-Agent Systems .. 10

2.1.5 Classical Planning Approaches ... 11

2.1.5.1 STRIPS .. 11

2.1.5.2 GraphPlan ... 12

2.1.5.3 GraphPlan Variants ... 13

2.2 State-of-the-Art Review .. 14

2.2.1 Contingency Planning .. 14

2.2.1.1 Contextual Graphs (CxG) ... 16

vii

2.2.1.2 Situational Objects .. 17

2.2.1.3 Bayesian Belief Network ... 18

2.2.1.4 Situational Interpretation Metrics .. 19

2.2.1.5 Multi-Agent Architecture .. 20

2.2.2 Dynamic Analysis .. 21

2.2.2.1 External Transitions .. 22

2.2.2.2 SimPlanner.. 23

2.3 Summary ... 24

CHAPTER 3: Problem Statement ... 25

3.1 Problem Definition .. 25

3.2 Hypothesis ... 26

3.3 Contributions ... 26

CHAPTER 4: Approach ... 28

4.1 Purpose .. 28

4.2 Combination of Paradigms ... 29

4.2.1 Typical Use Cases .. 30

4.2.2 Approach Requirements ... 30

4.3 Overview of ADCUE ... 33

4.4 Model Components .. 35

4.4.1 Attribute .. 35

4.4.2 Resource .. 36

4.4.2.1 Resource Example ... 36

4.4.3 Condition ... 37

4.4.4 State .. 37

4.4.5 Objective .. 38

4.4.5.1 Example .. 39

viii

4.4.6 Actions .. 39

4.4.6.1 Example .. 40

4.4.6.2 Simultaneous Actions .. 40

4.4.6.3 Action Levels ... 41

4.4.7 Events ... 42

4.4.8 Agent ... 43

4.4.9 Environment .. 43

4.4.10 Self-Describing Components ... 43

4.4.10.1 Example .. 44

4.4.11 Dynamic Components ... 44

4.5 Planning... 45

4.5.1 Planning Process .. 46

4.5.2 Example .. 48

4.5.3 Replanning .. 51

4.6 Introduction to Slicing .. 52

4.6.1.1 Historical Perspective ... 52

4.7 Slicing Applied to Planning .. 52

4.7.1 Plan Representation ... 53

4.8 Proposed Approach Algorithm .. 54

4.8.1 Intersection Operator ... 54

4.8.1.1 Testing Intersection Hypothesis.. 55

4.8.2 Plan Slicing .. 57

4.8.3 Example .. 58

4.9 Summary ... 59

CHAPTER 5: Implementation .. 61

5.1 Library Environment .. 61

ix

5.2 Library Usage .. 62

5.2.1 System Inputs .. 62

5.2.1.1 Attribute.. 63

5.2.1.2 Environment ... 64

5.2.1.3 Agent .. 66

5.2.1.4 Objective ... 66

5.2.1.5 Resource ... 68

5.2.1.6 Action ... 70

5.2.1.7 Event .. 70

5.2.2 System Output ... 71

5.3 ADCUE Architecture ... 71

5.3.1 Attribute .. 73

5.3.1.1 ADCUEComponent .. 74

5.3.2 Environment .. 75

5.3.3 Agent ... 77

5.3.4 Action .. 78

5.3.5 Routine .. 79

5.3.6 Event & Resource .. 80

5.3.7 State & Condition .. 80

5.4 ADCUE Algorithm Operation .. 81

5.4.1 PlanningGraph & PlanNode .. 82

5.4.2 Planner .. 84

5.4.3 ADCUE Analysis Algorithm .. 84

5.5 Summary ... 84

CHAPTER 6: Testing ... 85

6.1 Methodology .. 85

x

6.1.1 Graphical Visualization .. 86

6.2 Testing Scenarios ... 86

6.3 Breakfast Scenario .. 87

6.3.1 Simulation Description .. 87

6.3.2 Tests .. 89

6.3.2.1 Test 1: Sunny Forecast .. 89

6.3.2.2 Test 2: Sour Milk ... 90

6.3.2.3 Test 3: Free McMuffin® .. 92

6.4 UAV Scenario ... 93

6.4.1 Predator UAV ... 94

6.4.1.1 Physical Specifications ... 94

6.4.1.2 Operational & Weather Limitations .. 95

6.4.1.3 Equipment/Resources ... 95

6.4.1.4 Military Threats ... 96

6.4.2 Missions & Objectives .. 97

6.4.2.1 Reconnaissance ... 97

6.4.2.2 Surveillance... 97

6.4.2.3 Target Acquisition & Designation & Attack 98

6.4.2.4 Battle-Damage Assessment .. 98

6.4.2.5 Communications Relay & Jamming .. 98

6.4.2.6 Biological and Chemical Warfare Detection 99

6.4.2.7 Search and Rescue & Person Identification 99

6.4.2.8 Providing Dispensable Aircraft ... 99

6.4.3 Scenario Location .. 100

6.4.3.1 Map & Points of Interest .. 101

6.4.4 Scenario .. 102

6.4.4.1 Objectives .. 102

xi

6.4.5 Scenario Description .. 102

6.4.5.1 Base Plan .. 103

6.4.5.2 Scenario Components .. 103

6.4.6 Tests .. 104

6.4.6.1 Test 1: Headwind ... 105

6.4.6.2 Test 2: Poor Visibility ... 106

6.5 Overall Results .. 107

CHAPTER 7: Conclusion ... 108

7.1 Summary ... 108

7.2 Future Research .. 109

7.2.1 Multi-Agent System .. 110

7.2.1.1 Potential Reasoning Mechanism ... 110

7.2.2 Probabilistic Modeling .. 111

7.2.3 Learning .. 112

7.3 Conclusions ... 113

List of References .. 115

xii

LIST OF FIGURES

Figure 1: Breakfast scenario components .. 49

Figure 2: Planning graph representing the high level plan 50

Figure 3: Planning graph representing low level plan 51

Figure 4: Null Hypothesis Validation ... 56

Figure 5: Planning graph with events .. 58

Figure 6: Assigning reusable “me” objectives ... 67

Figure 7: High level ADCUE package structure .. 72

Figure 8: ADCUE representational class diagram .. 73

Figure 9: Attribute class diagram .. 74

Figure 10: ADCUEComponent class diagram ... 75

Figure 11: Environment class diagram ... 76

Figure 12: Agent class diagram ... 77

Figure 13: Action class diagram .. 78

Figure 14: Routine, Block, Statement, Event, & Resource class diagram 79

Figure 15: State and Condition class diagram ... 80

Figure 16: Planner/PlanGraph/PlanNode class diagram 82

Figure 17: PlanningGraph with three PlanNodes ... 83

Figure 18: Breakfast scenario plan .. 89

Figure 19: Breakfast scenario with Sunny Forecast event 90

Figure 20: Breakfast scenario with Sour Milk event ... 91

Figure 21: Breakfast scenario with Free McMuffin® event 92

Figure 22: Afghanistan map with Predator launch point and range © Google 101

xiii

Figure 23: UAV base plan .. 102

Figure 24: UAV scenario with Headwind event .. 105

Figure 25: UAV scenario with Poor Visibility event in Herat 106

xiv

LIST OF TABLES

Table 1: Example attributes for the resource Milk ... 37

Table 2: Pseudo code for determining plan affectedness 57

Table 3: Pseudo code for determining event consequences............................... 58

Table 4: Predator UAV Specifications ... 94

Table 5: Summary of testing and results ... 107

xv

LIST OF ABBREVIATIONS

AI Artificial Intelligence

CBR Case-Based Reasoning

CxBR Context-Based Reasoning

CxG Contextual Graphs

DoD Department of Defense

HCI Human Computer Interaction

SAF Semi-Automated Forces

SIM Situational Interpretation Metric

wff well-formed formula

1

CHAPTER 1: INTRODUCTION

Planning, the act of choosing a series of actions to bring about desired changes, is

an indispensable process when attempting to achieve goals. In the real world,

planning varies in complexity from simple to-do lists to massive organizational

strategic plans. In fact, nearly every aspect of life involves some form of planning,

even the mundane trip to the grocery store. As noted in [1], a person plans “to

increase his company’s volume of business, or to win an election, or to write a

letter, or to build a bridge...he plans all the time. By his very nature every man

plans constantly.” Not only do individuals benefit from planning, but studies [2]

show that organizations such as businesses with written, formal plans have a

higher chance of succeeding than those that operate on-the-fly. Thus, planning is a

foundation upon which intelligent human and even organizational behavior is

derived.

In a computer simulation, agents might range from operating purely in an

instinctive, reactive manner to sifting through millions of possibilities to determine

the best possible sequence of moves. Interactive computer-aided planning is

especially useful in domains where “what-if” scenarios assist with the design of

procedures and schedules. Automated agent-based planning includes applications

in scheduling where planners manage machinery in a manufacturing environment

[3], chess playing where extensive sets of possible future states are considered

before committing to a move [4], and motion planning where robots calculate the

best path to take in order to reach a destination [5].

One caveat is true for both humans and computers: any plan assumes certain

predictions about the future. A mental to-do list that just includes buying some

2

groceries presupposes no car accident will occur on the way to the store. A plan of

attack from a chess playing agent assumes the opponent will not abandon her

current well-fortified position and strategy. As a plan unfolds, the pliant future may

unveil events not previously expected. These interruptions may prevent the plan

from executing smoothly. For instance, you notice a piece of plywood in the road

ahead while driving to the grocery store, leading you to perform evasive action to

prevent a possible flat tire. Or in a game of chess, the opponent melds her approach

with a completely different approach, achieving a surprise capture. When

unanticipated events such as these occur, a human or computer agent must be

able to recognize what effects, if any, the event might have on the plan. In short, the

agent should be able to answer the question “What are the consequences or

implications of a given event on the plan?”

The ability to see the implications of an unanticipated event is a skill humans use

almost unconsciously throughout any given day. If by chance you meet an old

friend in the grocery store and engage in a lengthy conversation, you might begin to

mentally tabulate how this interruption will affect the rest to your day. Perhaps that

errand next on your to-do list can be done after lunch. Your lunch plans

themselves might change to include your rarely-seen friend. These plan

modifications come naturally in the case of a morning delay; however, in the case of

a missed delivery on a complex construction project or an unexpected tactical

maneuver in a battle, the implications and subsequent plan changes may not be as

easy to determine. In addition to being more difficult to calculate, the consequences

of these types of plans may be much more serious, as unexpected tactical

maneuvers can lead to casualties. Regardless of the difficulty, humans possess

techniques and heuristics that deal with determining the implications arising when

3

unexpected events occur, while intelligent computer agents struggle with seemingly

simple cause and effect scenarios in a dynamic world [6].

This research develops a model that endows computer agents the reasoning

faculties to understand consequences of unexpected events. Through inspection of

events occurring or known to occur in the future, agents can determine whether

these events have any effect on the plan, and if so, what those effects might be. This

model proposes to draw heavily from several preexisting paradigms: primarily

Context-Based Reasoning (CxBR) [7], Contextual Graphs (CxG) [8], and GraphPlan

[9]. While GraphPlan excels at creating plans in a static environment, CxBR and

CxG provide an approach for executing a plan based on the continually changing

state of the agent and the environment. Thus, an agent operating within these

paradigms moves between contexts (in CxBR) or nodes on a graph (CxG), allowing

the agent to intelligently adjust its behavior to a particular situation. GraphPlan

provides information about the relationships between situations, aiding reasoning

about events. Through adaptation and extension, a model that combines the

flexible, dynamic execution flow from CxBR, the straightforward representation of

CxG, and the explicit causality linkages within GraphPlan can achieve the goals of

this work.

This thesis continues in Chapter 2 by reviewing background material relevant to

understanding consequences. Both a historical perspective of planning and a state-

of-the-art literature review of current approaches to reasoning about consequences

are presented. Chapter 3 succinctly describes the problem faced, the hypothesis on

which this work is based, and the potential contributions resulting from the

investigation. Chapter 4 develops the formal model that provides the foundation for

the prototype implemented in Chapter 5. Chapter 6 describes the tests performed

4

using the prototype to verify the correctness and usefulness of the model.

Concluding in Chapter 7 with a discussion of the testing results, this thesis

summarizes the project and offers insights into future work that may further

improve the subject field.

5

CHAPTER 2: BACKGROUND

To better appreciate the problem domain of automatically determining

consequences of unplanned events in a real-world environment, a two-part

background is necessary. The first part of the background introduces the topic with

a historical perspective. Because agent behavior and reasoning is of particular

interest to this investigation, agents, planning/replanning, and multi-agent systems

are overviewed. The second part delves deeper into areas of planning by examining

the current literature related to reasoning about consequences. Two approaches

represented include contingency plans and dynamic analysis of event effects.

2.1 HISTORICAL PERSPECTIVE

Simulating agent behaviors in general can be approached from several different

levels. At the lowest cognitive level, agents act solely on instincts (reflexive agents)

[10]. Agents behaving on instincts operate completely in the “now,” without thought

to the past or future. They observe the environment and react with solutions

designed to satisfy a perceived want or need without regard for the future

consequences of such actions. On a higher level, reactive agents [10] may be

programmed to “feel” emotions or motivations that provide contextual information

to limit the available actions, weighting an agent’s action selection mechanism

toward certain tendencies. For example, feeling fear places constraints on the

actions the agent can perform. Even if an attractive option becomes openly

available, the feeling of fear may cancel any distracting thought of taking advantage

of the attractive option by keeping the agent concentrated on “flee or fight

behaviors” [11]. At the highest level, agents utilize cognitive abilities, considering

6

the past, present, and future to determine what behaviors to adapt (reflective

agents) [10]. This is the level at which agents possess the cognitive abilities to

project the consequences of actions into the future and formulate plans. Behavior

based on the first two levels (reflexive and reactive) do have a place in software

agent behavior [12] and can be used as the basis for other Artificial Intelligence (AI)

algorithms. However, it is not suitable for general purpose planning [13]. For

effective planning, agents must operate primarily at the highest level of cognitive

reasoning.

2.1.1 WHAT IS PLANNING?

Wezel, Journa, and Meystel [1] define a plan as a goal state and the methods of

achieving that goal state. This corresponds to the “what & where” and the “how &

when” of the plan [14]. They go on to postulate that the act of planning requires

three components:

1. An entity to develop a plan

2. An entity to execute the plan

3. The plan itself as represented as the communication between the two

entities

It is not necessary for the two entities to be separate; the creator and executer of

the plan can be the same entity. However, when implemented in a software agent,

the module that develops the plan is often separate from the module that executes

the plan. Thus, the separation of the creation and execution of the plan is an

important distinction.

7

2.1.1.1 MODEL OF THE FUTURE

The process of planning can be thought of selecting a sequence of particular actions

out of a large number of possible actions in order to achieve some specified goal [1].

Competent selection and successful execution of actions should, in an ideal world,

eventually yield the goal state. One of the major problems with planning is the fact

that any projection of actions into the future requires a model of the future [1].

Because the future does not yet exist and is subject to uncertainty, the success of a

plan depends on the quality of the model of the future. How a plan is affected by

the model of the future is easily seen in two extremes of human outlook:

• A pessimist, generally described as a gloomy person, always expects the

worst possible occurrence

• An optimist views the world through rose-colored glasses, often ignoring the

harsh reality

Typically, neither of these two extremes represents an accurate model of the future.

Consider a plan that includes two alternative activities: an outing to the beach or a

shopping trip to the mall. When developing the plan, the model of the future is very

important. If you ask the pessimist, she would say it is probably going to rain and

thus recommend the shopping trip. If you ask the optimist, she would be much

more inclined to disregard the possibility of it raining and recommend the beach

trip. If you were in charge of the day’s plan, which model would you use? Perhaps a

better model of the future might be the weather forecast for the day. It is interesting

to note that the most useful model of the future may differ depending on the type of

planning. Military planning may benefit from a more pessimistic model in an

attempt to always anticipate and forestall the worst possible scenario. Regardless of

8

the application domain, planning is highly influenced by the agent’s perception of

the future.

2.1.1.2 HIERARCHICAL PLANNING

Planning, by its very nature, is a hierarchical process [1]. Initially, the plan is

conceived using a very coarse granularity. If planning to do some errands around

town, the initial plan may only consist of a list places to visit. For example, one goal

of the plan might be to buy food for supper. Thus, the place “grocery store” may be

part of the initial plan, yet simply visiting the grocery store will not accomplish the

goal. As the plan is developed, it must be further expanded to a finer granularity.

Each place to visit may be expanded to include a sub-list of tasks to perform. In the

case of the grocery store example, the tasks may include selecting a recipe and

creating list of ingredients to buy. In general, a single action may represent a group

of sub-actions; this grouping is referred to as aggregation of actions. As the plan is

developed, each aggregation of actions is dis-aggregated, giving the plan a finer

granularity of details. This enhances the efficiency of the planning process. Instead

of initially attempting to manage myriads of unrelated pieces of information, details

are expounded only after the structure of the plan has been developed. In fact,

some small details of the plan may be disaggregated only moments before

execution, such the exact aisle and path to take in the grocery store.

2.1.2 WHAT IS AN AGENT?

The definition of an agent is of particular interest when dealing with agent-based

systems. What entities can be classified as agents? By what criteria is intelligence

judged? One definition postulates that it is the possession of several characteristics

9

such as autonomy, social ability, reactivity, and pro-activeness that differentiates

an agent from a software entity [15]. This definition may be expanded to a more

general one: an entity can be considered an intelligent agent only if it exhibits the

mental or emotional characteristic normally attributed to humans [15]. For the

purposes of this discussion, an agent will be defined as an intelligent software

entity with a purpose (i.e. it has some goal to achieve) and the ability to change the

state of the environment through the intelligent execution of actions.

2.1.3 WHAT IS REPLANNING?

Because planning deals with future expectations in an uncertain future, the actual

unfolding of the future may deviate from the agent’s expectations, or model of the

future. These deviations from the agent’s model of the future result from the non-

deterministic nature of a real-world environment or from the interference of another

agent’s actions. In short, the real world deals with probabilities – nothing is certain.

Entire branches of mathematics such as Bayesian statistics deal with the likelihood

that a particular situation will occur [16].

Oftentimes, these unexpected events will interrupt the plan in some fashion. The

severity of the interruption may vary from a slight inconvenience to a complete plan

failure if the action sequence is continued without modification. This is not to say

that all unexpected events bring unfavorable interruptions; in fact, unexpected

events may aid the agent in achieving the goal. Nonetheless, agents are typically

more concerned with obstacles to the plan. Because of these uncertainties, any

planning agent operating in the real world or a simulated environment that

accurately mimics the real world must account for error between what the agent

expects to happen and what actually does happen. Once this error has been

10

detected, the agent must re-analyze the plan and make corrections, including the

possibility of generating a completely new plan. This adjustment of the plan, or

“course correction,” is referred to as replanning.

2.1.4 MULTI-AGENT SYSTEMS

Currently, research into agent based systems is focused primarily on multi-agent

systems. While single agents can accomplish complex objectives, more

comprehensive objectives often require the teamwork of several agents.

Additionally, the interactions and cooperation among multiple agents are

fascinating not only to computer scientists, but also those in the fields of

psychology and sociology. Teams consisting of humans and software agents pique

the interest of Human-Computer Interaction (HCI) experts in addition to

organizations such as Department of Defense (DoD) as they investigate integrating

semi-autonomous forces (SAFs) into the military [17]. Furthermore, multi-agent

systems facilitate the development of simulations where more than a single entity

must be represented, such as is the case when training soldiers with teams of

intelligent agents acting as the opposing force.

In spite of multi-agent system’s popularity, single agent systems are still useful and

are particularly beneficial when developing and testing a new reasoning model.

During the construction of any new software, test cases must be built up gradually

and incrementally to verify each part of the software. Thus, the scope of this thesis

is limited to developing a reasoning model for a single agent. The goal of the model

presented in this thesis is to develop an initial version of the model and verify that

the model is sound, both of which can be done satisfactorily with a single agent

system. Because of the usefulness of multi-agent systems, one cannot simply

11

ignore them. Thus, the eventual goal of the model is to support multi-agent

systems. In order to develop a model that can be easily extended into the domain of

multi-agent systems, the investigation reported in this thesis keeps the

requirements and opportunities available in multi-agent systems in the background

of all choices and considerations. As a result, when developing the model,

preference was given to cases where initial model features or structures could easily

be extended to facilitate future multi-agent expansions.

2.1.5 CLASSICAL PLANNING APPROACHES

In 1969, McCarthy and Hayes [18] introduced situation calculus, a conceptual view

of planning that serves as the foundation for may subsequent planning approaches.

Situational calculus represents the planning environment through situations,

goals, and the effects of actions. It provides a clear methodology for planning

entities to project a plan into the future by manipulating the world state through

the execution of actions. This concept is used widely in state-based planning

systems where a planner executes actions that cause a series of world state

changes as a means of achieving a specific goal [19].

2.1.5.1 STRIPS

In 1971, Fikes and Nilsson [20] borrowed concepts from situation calculus and

proposed a new approach to planning and problem solving by introducing STRIPS,

the STanford Research Institute Problem Solver. Through a world representation

that has since become commonly referred as a “STRIPS domain,” the problem solver

describes the environment through a “composition of operators that transforms a

given initial world model into one that satisfies some stated goal condition” [20].

12

The world model is represented through facts and conditions, or well-formed

formulas (wffs) and first-order predicated calculus, respectively. Agents or the

global problem solver can use operators, which correspond to specific actions that

have certain, pre-defined effects on the world model. These effects fall into two

categories: effects that add or remove wffs. Changing a condition in the

environment would thus be represented via two effects: one that removes a pre-

existing wff and a subsequent one that adds the same wff with a new value.

Because operators can execute only under the presence of predefined wffs,

operators are said to be executable only when certain preconditions in the world

model exist. Given an objective, or final world conditions that must be achieved, an

agent searches through the problem space for sequences of operations that lead

towards the goal.

2.1.5.2 GRAPHPLAN

Building on the work of Fikes and Nilsson, Blum and Furst [9] extended STRIPS

with an improved planner called GraphPlan. Due to the increases in computer

memory and computational power, GraphPlan utilizes a Planning Graph, which

concisely organizes operators and their preconditions and effects in a graph. Each

node in the graph holds an action (operator) and each edge defines the

preconditions and effects associated with the connected actions. As in STRIPS,

effects are defined as add-effects and delete-effects. The graph is built in layers,

beginning with the initial state of the world where the agent exists in the current

time slice. As compatible operators are selected and added to the graph, layers are

built, with each layer representing all the possible actions for a particular step in

the plan. Once the graph is built, the planner begins with the end goal and works

backwards in the graph to trace what actions must be executed to bring about the

13

goal state. During this procedure, mutually exclusive actions are eliminated to

ensure plan validity. The path of actions necessary to bring about the goal state is

selected as the plan to execute.

The advantages to this approach are several-fold. First, graphs can be built quickly

in polynomial time. Second, the graph organizes the problem space in a logical

fashion, linking actions, their prerequisite conditions, and the effects. However,

most importantly, by representing the problem space in a graph, pre-existing graph

algorithms can be used to efficiently analyze and rank various plans. In terms of

the determining consequences, by explicitly defining causality between an agent’s

action and the effects that occur in the world, reasoning about unexpected events

becomes quite intuitive. However, GraphPlan has no built-in method to handle

such reasoning. Typical implementations of GraphPlan simply respond to events by

taking a snapshot of the current world and using that as the initial conditions

when executing the planner again. Furthermore, GraphPlan lacks the ability to

reason about the time and resources required to carry out actions.

2.1.5.3 GRAPHPLAN VARIANTS

Since the introduction of GraphPlan, numerous variants have been developed to

address limitations within GraphPlan. Krogt [21] addresses the lack of intelligent

replanning by proposing the Action and Resource Planning Formalism that

attempts to incrementally modify the plan so as to reduce replanning time and

prevent radical shifts in an agent’s behavior. To facilitate planning situations where

achieving the objective quickly is desirable, Dinh [22] replaces the instantaneous

execution of actions in GraphPlan with action durations and incorporates

optimizing features into his system, called CPPlanner, to find plans that require the

least amount of execution time. Because the original GraphPlan did not deal with

14

real-world uncertainties, Blum [23] extends actions to include multiple probabilistic

effects and improves the plan evaluation to search for plans that have the highest

likelihood of succeeding. In effect, approaches such as these represent a shift away

from classical planning where knowledge is perfectly known, outcomes are purely

deterministic, and no unexpected events occur.

2.2 STATE-OF-THE-ART REVIEW

As classical planning and replanning paradigms proved insufficient to solve real-

world problems, newer approaches began to assimilate more realistic models of the

real world. One aspect of particular interest that models have incorporated into the

planning phase is intelligently responding to unexpected events that occur during

the execution of the plan. The next sections delve deeper into the general problem

of planning and replanning to review how current state-of-the art literature has

approached this specific problem of reasoning about unexpected events and

determining their consequences. Currently, two general approaches to handling

unexpected events exist: activating pre-programmed contingency plans or

dynamically selecting new actions based on analysis of event effects. Each will be

examined in subsequent sections.

2.2.1 CONTINGENCY PLANNING

One approach to dealing with unexpected events is to specify pre-determined

contingency plans that handle events. If actions or situations commonly fail for well

known reasons stemming from an event occurring, an agent can be programmed to

recognize these events and avoid them by executing an alternative, or contingency,

plan. A situation where such a contingency plan might be helpful in the real world

15

is in a checkout line at a store. If the credit card won’t work or an item won’t scan

properly for the person in front of you, you would recognize that this event will have

certain effects on the plan; namely, your checkout procedure will have an

unspecified delay. When designing a planning system, a programmer can hardcode

modules that detect events such as these, calculate the consequences, and respond

with pre-defined contingency plan. For instance, the planning system may include

the contingency plan to leave the delayed checkout line and join another one.

While adding predefined contingency plans may be advantageous to the agent, the

primary problem with this approach is that it masks the underlying problem. The

true problem is that agents cannot automatically determine the consequences of

unexpected events. By manually adding contingency plans, a human is performing

all the cognitive work of programming the planning system to recognize and

respond to events. In this sense, unexpected events as seen in these systems are no

longer really all that unexpected because the planning system realizes they will

inevitably occur. The problem is further exacerbated by the fact when a truly

unexpected event occurs, the system has no methodology do deal with it. As a

result, if no contingency plan has been hard-coded into the system for a particular

event, the planner cannot reason about any of the potential consequences of that

event.

While it is true that implementing pre-determined contingency plans may not be

the best or latest solution to the problem of automatically determining

consequences, it lays the foundation for more effective solutions and must therefore

be carefully investigated.

16

2.2.1.1 CONTEXTUAL GRAPHS (CXG)

While not designed to serve as a planning paradigm, the approach of recognizing

consequences of events and responding to them in a pre-determined manner can be

implemented through the use of the AI paradigm Contextual Graphs (CxG).

Originally designed to specify human reactions to incidents that can take place in

particular situations, CxG represents this knowledge using contextual cues.

Brezillon [8] defines a contextual graph as “an acyclic directed graph with a unique

input, a unique output, and a serial-parallel organization of nodes connected by

oriented arcs”. The CxG reasoning process begins with a unique input node, traces

a single path through the contextual graph, and ends when a unique output node

is reached. Each type of node in the graph represents an action, a sub-graph, a

decision point, or a recombination of a previous decision. By combining these

contextual elements, a plan or process resembling a flowchart is built by a

contextual graph designer to handle a particular situation.

One of the strengths of CxG is its adaptability to incremental knowledge

acquisition. The designer of the contextual graph can easily extend the graph to

include contingency plans. Once the graph is redeployed, the graph can handle pre-

determined events. As a result, contextual graphs are well-suited for facilitating the

construction of a plan and then reasoning about what to do when a plan

interruption occurs – as long as a contingency plan exists to handle any situation

the agent may encounter. However, CxG suffers from several drawbacks. While

CxG’s can reason about the effects of events occurring in the immediate future, it

has no capability to project the effects of events into the far future and avoid

potential trouble spots. Another major disadvantage of CxG is its inflexible nature

and its inability to respond to any events not preprogrammed. This greatly reduces

the usability of Contextual Graphs in an automated system. Finally, because

17

contingency plans are encoded into decision nodes, they can only be activated at

particular points in the plan.

2.2.1.2 SITUATIONAL OBJECTS

Working towards the goal of developing an approach that allows contingency plans

to be activated when the need arises, Interrante [24] introduces the concept of

situational objects in her model of selective attention to sensors. In this model,

Interrante aims to limit sensory overload by analyzing only those sensors relevant

to the current situation. To accomplish this, she develops a set of situational

objects that control the agent in particular situations. Deriving information from

relevant sensors, an agent can develop a set of expectations about the future state

of the world on a global timeline. Using current sensor information and the

expectations of the future, transitions between situational objects occur to keep the

agent’s behavior optimal for each type of situation it encounters. If at any time the

agent predicts that a critical failure will occur soon, an object from a separate bank

of situational objects reserved for emergencies can be activated. These situational

objects represent contingency plans and respond to pre-determined events sensed

through expectations on the global timeline. The timeline functions as the method

for determining consequences and identifying events. For instance, an airplane

might initiate the contingency plan for an emergency landing when the expectation

timeline indicates a critical fuel shortage as detected through sensor information.

As with other approaches to contingency planning, if an unrecognizable situation

develops, no functionality exists to reason about the situation.

18

2.2.1.3 BAYESIAN BELIEF NETWORK

To dynamically consider uncertainty in a real-world environment, Blythe [25]

proposes a system that models action and event uncertainty through a Bayesian

Belief Network. In this model, events have enabling conditions that allow them to

occur with a certain probability. For instance, in the grocery store example used

earlier, the event bad credit card has enabling conditions of agent being in the store

checkout line and occurs with a frequency of 0.01. Furthermore, actions are

modified so they become non-deterministic, meaning that the execution of an action

may result in completely different effects depending on probabilistic functions. For

example, the action walk typically results in physical agent movement; however, an

infrequent, but possible alternate outcome may result in bruising if the agent slips

on a banana peel. All the possible alternative outcomes are added to the belief

network to create plans that include uncertainty. As alternatives are tabulated and

the probabilities are assigned to paths through the belief network, plans that have

a high likelihood of success can be chosen. Because causality about uncertain

actions and events are explicitly considered, consequences are considered

throughout the planning process. It is of interest that contingency plans are

considered as the agent plans and may be utilized even if a plan interruption has

not yet occurred. This is a byproduct of the attempted maximization of successful

plans; if an action results in high probability of failure, that action may be avoided

altogether and an alternative contingency plan might be selected. Ideally, this

approach leads to more robust plans by considering unexpected events a-priori and

selecting actions and paths that lead to plans that maximize the likelihood of

success. However, as before, all unexpected events and their associated

probabilities must be pre-programmed into the planning system.

19

2.2.1.4 SITUATIONAL INTERPRETATION METRICS

In the field of real-time tactical human behavior representation, Gonzalez and

Ahlers [7] proposed a paradigm called Context-Based Reasoning (CxBR).

Resembling an augmented finite state machine, CxBR adds the concept of contexts

where each context can be likened to a state that addresses the needs, actions, and

actions necessary to act intelligently in a particular situation. Organized

hierarchically, context types include Mission Contexts, Major Contexts, and Sub-

Contexts (with Sub-Sub-Contexts, ad infinitum) to successively control finer

grained behaviors. Thus, while a Mission Context might specify the overall goals,

constraints, and motives of the agent, a Sub-Context may control low-level physical

movement. At any given time, only one Mission Context, one Major Context, and an

optional Sub-Context may be active. Although CxBR does not explicitly construct

plans, Grama et al. [26] describe how CxBR can be used to construct a plan

consisting of the sequence of contexts that an agent anticipates using to achieve

the objective.

One of the weaknesses of CxBR is the selection and transition of contexts [17].

Historically, this has been accomplished with pre-defined sentinel rules; however,

this approach results in rather inflexible transitions, especially in large systems.

One solution to this problem, advocated by Gonzalez and Saeki [27], introduces the

concept of Situation Interpretation Metrics (SIMs). SIMs quantify the situation in a

tangible manner, revealing the difference between the current situation and what

the agent’s needs. Under their Competing Contexts Concept, this difference

between reality and the agent’s perceived goals (needs) drive the transition of

contexts. By allowing contexts to compete amongst each other for the chance to

handle the situation, it is significantly more likely that the context best suited will

become active. The context that most effectively addresses the current agent’s

20

needs by achieving or partially achieving the goal state is deemed the best context

and wins the competition. Through this approach, selecting and transitioning to a

context is no longer fixed through pre-programmed sentinel rules, but changes

dynamically as the situation and agent needs change.

Salva [17] extends this work in context transitions with the concept of enabling

processes and interruptions. Enabling processes can be viewed as the pre-

requisites for an agent to transition and remain in a context. Interruptions

represent events that disrupt the enabling processes, thus putting the whole plan

at risk of incompletion. Any interruption requires a change in the plan. Depending

on the implications of the interruption, an alternative context may be available

which will still allow the agent to complete its goals. Not only does this approach

simplify replanning, but the concept of interruptions carrying specific implications

provides an easy method for determining the consequences of events that occur.

The limitation of the approach is that interruptions and alternative contexts must

be specified a-priori, which is impractical in a dynamic real-world environment.

2.2.1.5 MULTI-AGENT ARCHITECTURE

While most contingency planning approaches operate in single agent systems,

Micacchi [28] extended these ideas into soft real-time environments with multiple

agents. In his a multi-agent system, the different types of agents include a central

coordinator agent that tasks worker agents with goals to achieve. The worker agent

is responsible for achieving the goal and reporting back to the coordinator. To

operate within the constraints of a soft real-time environment, unexpected events

are separated into three categories: opportunities, potential causes of failure, and

barriers. While opportunities have no detrimental impact on the plan, barriers

prevent the plan from achieving the goal. Potential causes of failures may become

21

barriers in the future if the current plan is continued without any modifications. A

list of hard-coded responses, or contingency plans, is associated with each

unexpected event. When a worker agent encounters an unexpected event, it first

determines whether one of the response contingency plans is appropriate, meaning

it will lead to the successful completion of its task. If so, the response that resolves

the effects of the event the least amount of time is selected. If no appropriate

response exists, the worker agent sends a panic message back to the coordinator

and awaits a new task or command, thus passing off the burden of determining

consequences. Because each contingency plan is built into the system at

construction time, reasoning about the consequences is rather limited.

2.2.2 DYNAMIC ANALYSIS

Dynamic analysis, in contrast to pre-installed contingency plans, attempts to

analyze the effects of the unexpected event on the plan and determine how the plan

can be salvaged without resorting to pre-defined contingency plans. In short,

dynamic analysis extracts more information from the effects of events and

processes this information more intensively to develop a new plan that depends

only on normal, available actions. If it is possible to repair the plan, the process of

dynamic analysis should yield an alternative sequence and/or selection of actions

for the agent to execute that will successfully complete the plan goals. While a

computationally and cognitively more difficult endeavor, this has the distinct

advantage of providing an agent with the flexibility of reasoning about any

unexpected event, not just those programmed by the developer. In the previous

example of waiting in a checkout line, an event consisted of the person at the front

of the line having problems with the credit card machine. In this situation, an agent

using dynamic analysis will use the effects of the event (delayed checkout) to

22

determine the consequences (missed movie show, etc). Once the agent realizes the

current plan is no longer tenable because it will result in unachievable objectives,

the agent can begin the process of trying to adjust the plan by rearranging the

order of actions or adding new actions to mitigate the effect of the event. For

example, the agent may find that getting out of the line and walking over to another

line is an appropriate solution which will allow the agent to achieve its goal.

Several approaches can be seen in related literature.

2.2.2.1 EXTERNAL TRANSITIONS

Nareyek and Sandholm [29] present the concept of external transitions to develop a

planner that can discover indirect consequences and exploit the combination of

parallel actions and events. Instead of representing an event as a single set of

effects that take place at a certain point in time, they define external transitions as

the ongoing changes in the world that result from the occurrence of an event. From

this, they develop an enhanced rule-based system that can reason about indirect

consequences. Indirect consequences form when the effects of simultaneous actions

executed by multiple agents and/or events interact to produce results not originally

intended. As a plan consisting of actions from multiple agents or events working in

parallel is built, the plan is dynamically analyzed for unanticipated results, which

are recorded and stored as indirect consequences. Avoiding the consequences of

unexpected combinations of actions or events allows the replanning process to

achieve the goals of the agent while taking into account unexpected events.

Because events are defined similarly to actions in that they have specific

preconditions, this method works well to determine side effects, but has some

limitations when it comes to determining the consequences of unexpected events.

Although this linkage of events to preconditions allows events to activate under

23

known situations, it defeats the purpose of the unexpectedness of events because

now the agent knows when particular events will occur and under what conditions.

In order for realistic event modeling, events should be able to occur without any

apparent reason to mimic the sudden appearance of problems in the real world.

2.2.2.2 SIMPLANNER

As an extension of GraphPlan, Onaindia et al. [30] presented the SimPlanner

simulator that permits an agent to perform planning, execution monitoring, and

replanning throughout the duration of the agent operation. This interleaving of

planning and execution provides several advantages. First, any change in the

environment, such as the occurrence of an unexpected event during execution, is

detected by the monitoring module and subsequently incorporated into the plan,

invoking the replanning module if necessary. When an unexpected event occurs,

the system assumes the current action can finish unaffected, but the remaining

action sequence is dynamically analyzed to see how the event possibly impacts the

rest of the plan. If the plan is affected as determined by unsatisfied preconditions

(i.e. the event prevents future planned actions from executing), the planner

attempts to incrementally change the plan so as to follow the original plan as close

as possible without sacrificing a more effective solution. In effect, SimPlanner

recognizes the consequences of the event and attempts to shift the plan a little bit

at a time until the consequences disappear. Once a valid solution is reached, the

agent can continue to execute the repaired plan and achieve the goal.

Through this method, SimPlanner can monitor the execution of the plan,

anticipating the consequences of events and readjusting the plan as necessary.

While this represents a good start, several problems become evident. First, the

assumption that the event will not impact the currently executing action may not

24

always be valid. In some situations, such as a missile launch by an enemy agent,

the agent may want to immediately terminate the current action and pursue a more

reasonable plan of action, such as evasion. Another limitation of the model is its

inability to reason about the availability and consumption of resources required by

actions. Finally, all actions are assumed to be instantaneous, which limits the

feasibility of using such an approach in the real world.

2.3 SUMMARY

Throughout this chapter, planning, agents, multi-agent systems, and classical

planning paradigms are described to provide the background material necessary to

contribute to the overall understanding of the goals of this work. Additionally, state-

of-the-art literature addressing how consequences are detected and resolved has

been reviewed. Now that this background has been discussed, the subsequent

chapters will draw from relevant ideas and concepts in this chapter to develop a

model that automatically determines consequences of unexpected events.

25

CHAPTER 3: PROBLEM STATEMENT

This chapter presents a concise description of the problem addressed in this thesis.

3.1 PROBLEM DEFINITION

Historically, simulations have provided an abstracted environment in which to test

an algorithm or approach without the time or cost overhead of a physical or real-

world system [31]. Often, simulations were preferred because they did not suffer

from physical sensor deterioration or the noise often found in the real world; in

essence, assumptions were made to simplify the research [32] and to cope with

limitations in processing power. As a result, agents in a simulation always knew

what to expect and how to deal with any situation encountered. However, with

demands for more accurate results in realistic environments and the ability to

process more data through increases in computing resources, simulations grew

more complex to better emulate real-world conditions. This increased availability of

high power computing machines resulted in an increasing number of agents

moving out of simple simulations into real-world systems, which caused many

existing approaches to fail [32]. Analyzing these failures led to the conclusion that

the inherent uncertainty of a real-world environment introduced events and

situations that the agent was not able to handle. Agents could not effectively

operate in the real world because existing models insufficiently addressed issues

such as the dynamic nature of the environment and the incompleteness of an

agent’s knowledge.

26

The problem this thesis addresses is that when faced with an unexpected event that

dynamically affects the environment, how can an agent respond intelligently? More

specifically, if an agent becomes aware of an unexpected event occurring either

currently or at some point in the future, how can the agent automatically determine

the consequences of the unexpected event on its plan in order to replan more

effectively? Two important considerations play a role in this problem. First, this

process must be automatic, eliminating static contingency plans designed for pre-

programmed plan interruptions. Secondly, this process must aid replanning. This

means that the results of determining the consequences must be able to be

interpreted by the agent. By gauging the future consequences, an agent should be

in a better position to make more effective decisions.

3.2 HYPOTHESIS

Agents can automatically determine consequences of unexpected events by utilizing

a model that incorporates the plan representation of GraphPlan, dynamic

transitions of CxBR, and the relationship debugging features of slicing.

3.3 CONTRIBUTIONS

This research into automatically determining consequences of unplanned events

can result in several important contributions:

• A new model that provides an effective method for agents to deal with

unanticipated situations through a framework that reasons about the

consequences of unexpected events

27

• A test bench prototype from which “what-if” scenarios can be developed,

tested, and deployed

• A reusable programming library that other intelligent agents can utilize

28

CHAPTER 4: APPROACH

Now that the problem has been concisely described and the relevant literature

reviewed, this chapter proposes an approach to enable agents to reason

automatically about unexpected events occurring during the execution of a plan.

Through the development of the approach, the design phase of the proposed model

as a reusable library is discussed. First, the purpose and benefits of developing a

reusable library for the model is examined. Second, approach requirements are

examined to determine what existing paradigms can be incorporated into the

solution. Third, the proposed approach framework, named ADCUE, is introduced

and overviewed. Fourth, each component in the ADCUE model is presented in

detail to completely describe the foundation of the model. Fifth, planning and

replanning as related to ADCUE agents is discussed. Sixth, the underlying

technique of slicing is introduced as the major component of the proposed approach

that aids in determining consequences. Seventh, the application of slicing to

planning is described so as to facilitate the transition of this technique to a new

domain. Eight, pseudo code for the algorithm that determines the consequences of

unexpected events is provided to gain a deeper understanding of how the proposed

approach works. Finally, examples are dispersed throughout the chapter for

clarity’s sake.

4.1 PURPOSE

At the outset of this research project, the goal was to develop an initial model that

could endow agents with the cognitive abilities to reason autonomously about how

unexpected events affect the plan. It was envisioned that this work would be

29

expanded with subsequent research. Thus, in order for further work to be easily

added and allow room for model expansion, a clear separation between the testing

prototype and the actual core model implementation is necessary. By implementing

the model as a library, the initial limited prototypes can later be abandoned while

preserving and upgrading the library. Thus, the implementation performed for the

purposes of this thesis is a multi-stage process: first, create a generic library

encapsulating the model and reasoning methods and secondly, develop test cases.

Each test case developed would be a separate application that utilized the

functionality provided by the model. By using this approach, anybody desiring to

develop a simulation where agents need to reason about the consequences of

unexpected events can easily integrate it with the library.

4.2 COMBINATION OF PARADIGMS

When designing an approach to solve the problem of interpreting the implications of

unexpected events, preexisting paradigms described in the literature were examined

for suitability to the problem at hand. For various reasons mentioned previously,

the approaches overviewed in Chapter 2 were found unsuitable. However, while no

single paradigm could be applied directly to solve the problem, many of the

approaches provided valuable contributions that could be incorporated into a

future, more comprehensive model. In order to find the relevant paradigms that

apply to the problem, a typical use case is examined and several core requirements

of the final desired model are now specified.

30

4.2.1 TYPICAL USE CASES

Two typical use-cases are envisioned. First, automatic consequence determination

may be quite useful when creating and testing “what-if” scenarios. In this use-case,

a user would create a plan (or help the system to generate a plan) and subsequently

inject events into the system to observe the results of “what if so and so happens”

scenarios. Employed in this manner, a user is more interested in the plan itself

than the actual execution or simulation of the plan; the benefit to the user in this

case is testing a plan for robustness under different operating scenarios and

correcting weak links in the plan sequence.

A second typical use-case scenario consists of an intelligent agent operating within

a real or simulated environment. In this use-case, an intelligent agent is usually

generating plans autonomously and must subsequently reason and respond to

unexpected events in real-time. When this scenario is utilized by an agent, the

execution or simulation of the plan to achieve some objective is considered more

important. Here the benefit to the agent is the ability to recognize when unexpected

events affect the plan, and then be able to aid the replanning process by

determining the effects of events.

4.2.2 APPROACH REQUIREMENTS

From the use-cases mentioned in the previous section, it is clear that any developed

model that automatically determines the consequences of unexpected events must

satisfy several requirements. These requirements were used to evaluate existing

paradigms for suitability to the specific problem at hand. Five core requirements of

the final system were drawn up. For each of the first four requirements, a paradigm

31

has been selected to address the requirement and to be incorporated into the

approach. The requirements are as follows:

1. Plan Generation/Representation: Before any reasoning about events

can take place, a plan must be provided by the user or generated by the

agent. A plan must consist of a sequence of steps using environmental

components such as goals, actions, and resources available.

Selected Paradigm: Although it has some fundamental limitations as

described in the literature review, GraphPlan is a well-respected planning

approach in the STRIPS domain that can be used within static

environments to build a plan. The representation of a plan in a graph

format with each node representing a step to execute and each branch

representing an alternate series of steps is particularly well suited to

analysis. In addition to utilizing a graph representation, the key concepts

drawn from GraphPlan include the concept of using sequences of actions

to change an initial state to the agent’s goal state.

2. Event Analysis: When an unexpected event does occur, the agent must

have some method of analyzing the event and determining whether this

event affects the plan and if so, the nature of the effects.

Selected Paradigm: Through the relationship established between a

program consisting of sequential instructions and a plan consisting of

sequential steps, the technique of slicing used in debugging domains can

be applied to analyzing a plan. The primary use for this technique in the

planning domain is to analyze the dependencies between actions and

events and preconditions. Employing the technique of slicing to a plan

32

can yield answers to the questions: Does this event affect the plan? If so,

how?

3. Dynamic Transitions: To adequately handle real-world environments

with unexpected events, an agent must be able to dynamically transition

from the current action to a new solution when an unexpected event

renders the current plan untenable. Another important aspect of

dynamic transitions is that the transitions are not hardcoded, i.e. the

agent or the system builder should not directly link the occurrence of

specific events to specific contingency plans.

Selected Paradigm: Because of its definition of states and flexible

transitions between states, Context-Based Reasoning (CxBR) has proven

suitable for controlling the behavior of real-time agents in dynamically

changing environments. While previous attempts to deal with event

interruptions have relied on hardcoded contingency plans, incorporating

the concept of hierarchical states (or contexts in CxBR terminology) and

flexible transitions will enrich the final model. CxBR concepts will enable

agents to adjust their behavior dynamically to situations they encounter.

4. Incremental Updatability: One of the key aspects of any planning

system is the flexibility to change quickly and adapt to new scenarios. In

this case, plans should able to be incrementally updated through the

introduction of events or new actions. For instance, during “what-if”

scenarios, it is useful to add/remove/modify resources or inject events

into the environment dynamically to test the robustness of the plan.

Selected Paradigm: Because it attempts to model processes that are often

subject to change, Contextual Graphs (CxG) was chosen as a paradigm

keeping data up-to-date and consistent. By applying CxG’s feature of

33

Incremental Knowledge Acquisition, it is possible to easily modify the

environment or plan. To support dynamically updating the environment

components at runtime, this concept is extended to include injecting

events into the model at any point in time.

5. Agent Simulation: The final requirement of the proposed approach is its

support for accurate simulation of an agent in a dynamic, changing

world. This would require the inclusion of concepts such as time

durations for actions, resource usage needed to accomplish a goal, and

close to real-time execution.

Approach: The final requirement of real-time agent simulation is a feature

exhibited in many systems, but is unique to the final system because of

the combination of various architectures that have differing levels of

support for the simulation of agents.

4.3 OVERVIEW OF ADCUE

The approach proposed in this thesis is the Automatically Determining

Consequences of Unexpected Events (ADCUE). ADCIE incorporates aspects from

the aforementioned paradigms in addition to new features described in this

chapter. ADCUE provides a simulation environment in which an agent can exist

and operate. Furthermore, ADCUE provides an agent with built-in abilities to

reason about the consequences of unexpected events. This is accomplished through

the interaction between the various ADCUE components:

• Attribute: A feature of a component represented by a name, type, and value

34

• Resource: A non-intelligent, material entity that can be used, produced, or

synthesized by an agent through the execution of actions

• Condition: A Boolean relationship between an attribute and a value that

evaluates to true or false depending on the current state

• State: The presence of one or more conditions, allowing a situation to be

quantified and uniquely identified

• Objective: The goal of an agent represented by a state that specifies the

conditions that should be true for the agent to have accomplished the goal

• Action: A black box, executable by an agent under necessary preconditions,

that produces a change in the environment through resulting postconditions

• Event: An action, without preconditions, executed by the environment or

another agent, as perceived by the current agent

• Agent: An intelligent entity with objectives to achieve by executing actions

that produce/use/synthesize resources

• Environment: Describes the system as a whole in terms of the previous

components and any custom data attached to the simulation

Using these components, a complex simulation can be constructed to represent

real-world environments and situations. The ADCUE system is capable of

representing objective-driven agents that plan, handle events, and replan when

necessary. To further understand how each of these components contributes and

enhances ADCUE, they are subsequently examined in detail.

35

4.4 MODEL COMPONENTS

Each component in ADCUE has specific features that enable the construction of a

realistic simulation that functions smoothly and correctly. In this section, the

features of each component are described and examples are given to clarify how the

component integrates within the model as a whole. The convention for a component

name is to use italicized font, such as the resource Milk. To refer to attributes, the

dot operator will be used; for instance, Milk.Spoiled might represent an attribute

that becomes true when the resource Milk expiration date passes.

4.4.1 ATTRIBUTE

Attributes form the core of all other components and are used extensively

throughout ADCUE. An attribute describes one aspect or feature of a component. It

has three parts:

1. Name: The name uniquely identifies the feature of the object. One

example for the resource Milk might include Spoiled.

2. Type: The value of the feature may be numerical, categorical, or Boolean.

An attempt to set or modify the value of an attribute must abide by the

type of the attribute (i.e. it should be impossible to set a categorical

attribute to a numerical value).

3. Value: The last part of an attribute is the actual value of the attribute.

This describes the component in terms that the rest of the simulation

can understand and typically changes to reflect the passage of time. The

format of the value depends on the type. Numerical values may take on a

value within the range of real or floating point numbers. Categorical data

36

is represented textually, and the type Boolean may be considered

categorical with only two valid categories: true or false.

4.4.2 RESOURCE

A resource in a general sense can be defined as “an available means” [33]. In

ADCUE, a resource represents a non-intelligent, material entity that is potentially

useful to an agent in the system. Agents can consume resources, produce

resources, or synthesize one resource into another through the execution of

actions. Two pre-defined attributes are particularly important when considering a

resource: amount and ownership. Any resource must have a finite amount or

quantity; this value is likely to change throughout the execution of the simulation

as the resource is produced and/or consumed. For future multi-agent

considerations, ownership will play an important role. For example, if used in a

battle simulator, ADCUE would need to clearly separate resources between

opposing agents in addition to limiting or preventing the simultaneous usage of

resources.

4.4.2.1 RESOURCE EXAMPLE

As mentioned earlier, the resource Milk can be viewed as a resource. It can be said

to be produced by a Supermarket agent and consumed by a Person agent.

Extending the example, a Person agent might synthesize Milk into another resource

such as Chocolate Milk or Buttermilk Pancakes. An example of attributes for this

resource might include those seen in Table 1.

37

Table 1: Example attributes for the resource Milk

Attribute Type Value

Amount Numerical Initial value: 1 gallon
Location Categorical Refrigerator
Ownership Categorical Agent.Smith
Spoiled Boolean Initial value: false
Temperature Numerical Initial value: 40° F

4.4.3 CONDITION

A condition can be defined as a “state of being” [33], and must always evaluate to

true or false: either the condition exists or it does not. In real life, a condition might

be represented with the question “Is the milk spoiled?” This condition is true or

false. In ADCUE, a condition is represented with a relationship between an

attribute and the value for the attribute. Thus, a condition has three parts: the

attribute, relationship, and value. Relationships available in ADCUE are: equals,

not equals, greater than, less than, greater than or equal, and less than or equal.

Conditions are used extensively when determining whether an action can or should

be executed. In our real-world “Is the milk spoiled?” example, the condition might

indicate whether you can have cereal in the morning. ADCUE represents this

condition as “Milk.Spoiled not equal true”. Although it reads slightly differently for

ease of computation, the semantic meanings are the same.

4.4.4 STATE

Because a single condition will typically not convey all the information necessary to

define a situation, multiple conditions may be combined together to form a state.

Thus, a state can be used by an agent to identify situations. It can be said that an

agent is in a state (or situation) only when all the conditions that form the state are

38

true. It is important to note that states do not usually specify all possible conditions

that can occur at any one given time. Often only a few key conditions are necessary

to determine the state, such as “Tire.Flat equals true” and “Jack.Broken equals

true”. The fact that the condition “Car.Color equals white” has little relevance to the

fact that the agent is in a state with a broken car that cannot be easily repaired.

This technique replicates CxBR’s method of limiting the scope of what the agent

considers to only what is relevant in the current state or context. An example might

include state named Enough Milk that combines the condition as “Milk.Spoiled not

equal true” with “Milk.Amount greater than 1 cup”. By checking whether these two

conditions are true, the agent can determine whether or not it is in the state

Enough Milk. An agent is only in the Enough Milk state when both conditions

evaluate to true.

4.4.5 OBJECTIVE

When planning, usually a desired outcome exists as a set of goals or objectives.

ADCUE uses the component objective to describe the final state which an agent is

trying to bring about by executing actions. From the ADCUE point of view, there is

no difference between a state and an objective except the special connotation that

an objective is the desired outcome or state that the agent wishes to exist. In fact,

achieving the objective might signal the end of the simulation. Because the

conditions contained within the objective may or may not be true depending on

whether the objective has been achieved, the agent’s goal is to find a way to make

all the conditions true and bring the state into existence. Another way to view

objectives is the end result of executing a series of actions that incrementally

change the state of the environment until the state matches the state specified as

the objective.

39

4.4.5.1 EXAMPLE

A sample objective, in natural language terms might be “agent Smith wants to eat

after he wakes up in the morning.” Translating this to the ADCUE model, the

objective might be represented with a state named Not Hungry that consists of two

conditions: “Smith.Location not equals bed” and “Smith.Hungry equals false.” This

objective would guide the agent Smith to execute the action Get out of Bed followed

by the action Eat Breakfast to change the initial state of the environment satisfy the

conditions specified by the objective.

4.4.6 ACTIONS

In real life, an action may be defined as a set of steps performed. For simplification

purposes, ADCUE views actions in a similar manner. One exception is that ADCUE

treats all actions as “black boxes” in that an agent can execute an action to achieve

some effect on the environment. This black box treatment means ADCUE would

happily accept an action named Transport Item that instantaneously transferred an

item to the moon without questioning how the action worked. Neither the agent nor

ADCUE care what physical processes or steps need to be taken in order to bring

about the conditions.

To execute an action, an agent must ensure the set of conditions associated with

the action are all true. Every condition within this set of conditions, called the a

precondition, must be satisfied before the action can be run. For example, the

action Cook Pancakes may require the resources Pancake Mix and Stove. These

would correspond to preconditions “Pancake Mix.Amount greater than 1 package”

and “Stove.Broken not equals true”. Without these preconditions being true, it is

impossible to execute the action Cook Pancakes. Once the preconditions for an

40

action become true, the agent is free to execute the action to bring about the

effects, or postconditions. Postconditions represent the conditions that are true

after the action executes and are defined per action. It is possible for multiple

actions to accomplish similar goals, but differ in resources used, leading to the

realistic and complex interaction between resources and actions available to the

agent.

4.4.6.1 EXAMPLE

Returning to the cooking example, agent Smith may have a number of actions

available to achieve the objective Not Hungry, such as Pour Cereal and Milk, Cook

Pancakes, and Order McMuffin®. Execution of any of these actions will result in the

same basic effect or postcondition, namely Smith.Hungry, will become false.

However, they differ in preconditions and other postconditions. Pour Cereal and

Milk will reduce cereal and milk resources. Cook Pancakes will consume extra time

and require additional cooking utensils, such as a pan. The action Order McMuffin®

has preconditions of Car and Money and may have a postcondition of higher

cholesterol. As can be seen, complex interactions can be built with relatively little

effort.

4.4.6.2 SIMULTANEOUS ACTIONS

Modeled after CxBR’s “one active context” limitation, ADCUE permits agents to

execute only one action at a time; thus, an agent can never perform two actions

simultaneously. Since the functionality of executing simultaneous actions may be

desired in some situations, such as executing the actions Talking and Driving at the

same time, the concept of multiple inheritance is introduced. Inheritance allows a

parent action to pass the full properties of itself to a child action. The child action

41

can be viewed as a copy of the parent action with the addition of any

customizations or additions specific to the child. Multiple inheritance allows an

action to automatically incorporate the characteristics of more than one distinct

parent action. Used in this manner, multiple inheritance allows the system designer

to combine the effects of multiple actions into a single new action. For example, the

action Talking and Driving, a child of both the Talking action and the Driving action,

embodies all the characteristics of its parent actions, including postconditions. The

new action’s postconditions are the combination of each individual action. Thus,

from the perspective of an ouside observer, the execution of the child action Talking

and Driving is no different than executing the parent Talking action and Driving

action simultaneously. This effectively achieves the same end as simultaneous

actions. While more work is required to manually create child actions and specify

inheritance, this approach avoids the compatibility problem that may occur under

automatic action composition whereby an agent may try to execute Get Dressed

and Drive to Work simultaneously to save time.

4.4.6.3 ACTION LEVELS

CxBR employs a hierarchical structure for contexts that lends itself well to

organizing states into logical clusters of differing detail. ADCUE applies this

functionality to actions by allowing levels to be associated with actions. Currently,

“high” level and “low” level actions are utilized. For the allowance of more detailed

actions in future expansions of ADCUE, “lower” level and “lowest” level actions are

reserved, but not implemented. High level actions represent the lowest granularity

of an action, and decreasing action levels (low, lower, lowest) indicate increasing

amounts of details. The hierarchy allows high level actions to be composed of many

lower level actions. For instance, a high level action might be Eat Breakfast, while a

42

low level action for Eat Breakfast might be Cook Pancakes or Chew. Consequently,

the lower level action specifies how to accomplish the high level action. This

hierarchical grouping of actions has a number of far reaching impacts. First, this

organizes actions into more natural and manageable structure. Secondly, action

levels provide a means of defining the amount of detail within a simulation. While

one simulation might only require high level actions, another might require lower

level actions to physically control the movement of the agent. Finally, this allows

the planner to plan on several levels. The planner may initially generate a plan

using only high level actions and then expand the plan using the lower level

actions, thus saving computational time. This also allows the planner to generate a

high level plan and then fill in the details later by expanding high level actions with

lower level actions as necessary.

4.4.7 EVENTS

Events have many similar properties to actions. Both affect the world through

predefined postconditions. However, there are some key differences. First, events

have no preconditions, i.e. they can execute at any time. Events are triggered

randomly (to simulate the randomness found in the real world) or by the user, who

may be interested in seeing how the agent will react to the event. Another important

difference is the frame of reference. An event can be considered an action that is

perceived, but not initiated, by the current agent. Under this definition, the action

executed by agent Jones is perceived as an event by agent Smith. Events are said to

belong to and be executed by the environment. For example, the event Meteorite

Strike may be triggered with a certain probability by the environment or by the user

of the simulation.

43

4.4.8 AGENT

An agent is an intelligent entity of a particular class (person, tank, etc.) that is

capable of carrying out actions and reasoning about events. An agent uses actions

and resources to change the current state to reach some end state, or objective. The

actions the agent will tentatively execute in the future are referred to as the plan

and are generated with the help of the reasoning model, which is described later.

4.4.9 ENVIRONMENT

The environment encapsulates all the previously described model components and

provides the interface to the simulation. It also contains global attributes such as

the current time, location, or weather. The environment is also responsible for

handling the execution of events, either probabilistically or upon the command of

the user. Finally, the environment may specify application-dependent information

such as geography, opposing military movements, etc.

4.4.10 SELF-DESCRIBING COMPONENTS

One important requirements of ADCUE is that all components must be completely

self-describing. Self-describing components keep track of their status and perform

internal housekeeping, thus encapsulating both data and functionality within the

component. To illustrate, an agent operating within a traditional rule-based system

might check the expiration date on a milk container to see whether the resource

Milk is still usable. However, this encourages sprawling dependencies between

components; furthermore, the check must be duplicated for each agent that uses

the resource Milk, a practice discouraged when building software systems. In

44

ADCUE, the burden of knowledge is shifted to the component itself. Under this

approach, the milk container should describe itself completely, including the

knowledge of when it is expired. For example, when the milk container detects it

has expired, it should update its attributes to reflect the new condition of itself (i.e.

the attribute Milk.Spoiled should be set to true).

The benefit to this approach is that it modularizes the design by placing the burden

of knowledge, not on the agent, but on the individual component. By enforcing this

requirement, it is possible to add, remove, modify, or fine-tune components without

necessarily requiring any modification of any other component, including the agent.

Furthermore, this allows the modification of the system to occur dynamically at

runtime, even when the agent is in the middle of completing a mission. This is

particularly important for “what-if” scenarios where a user of the system may want

to add or remove resources or other components to the system to see the effects of

such modification.

4.4.10.1 EXAMPLE

Because of the self-describing requirement, two attributes of Milk, Spoiled and

Temperature, must be updated to keep the state of the component up-to-date. For

example, if attribute Location changes from “Refrigerator” to “Counter,” the resource

must periodically update the Temperature attribute to reflect the fact that the milk

is getting warmer.

4.4.11 DYNAMIC COMPONENTS

Because of the nature of the model and the self-describing requirement, ADCUE is

designed so that a component can be modified dynamically during runtime while

45

still preserving the integrity of the system. This is achieved by the injection of

events into the system. For example, in a simulation of an Unmanned Aerial Vehicle

(UAV) surveying geographic locations, the user of the simulation may want to inject

an event predefined by the system developer, such as Hostile Missile Launch.

However, consider the event Rats Chewed on Wires – an event certainly not pre-

defined. If the user wishes to inject such an event to see how it affects the agent,

the user could define the effects as “disable a random piece of equipment on the

UAV.” After inputting the event into ADCUE, the user could subsequently inject

the event into the environment and observe the agent’s response. This allows

scenarios to be built by adding/removing components and observing the effects on

the system.

4.5 PLANNING

Since the goal of every agent is to achieve its assigned objectives, planning is the

first step in calculating how the agent can use the actions and resources available

to it to bring the end state into existence. Given a state, or set of conditions, that

must exist for the agent to consider its mission a success, what sequence of actions

should the agent schedule to run? Because ADCUE draws a significant amount of

conceptual material from the GraphPlan paradigm in terms of specifying how

agents use actions to achieve goals, the approach presented here is similar to that

found in GraphPlan papers. Both GraphPlan and ADCUE employ a backward

chaining, demand-based planning system.

46

4.5.1 PLANNING PROCESS

The planning process of finding a sequence of actions can be described as an

incremental process that finds actions in reverse chronological order, leading from

the objective to the current agent’s state. The goal of the process is to produce a

directed planning graph that links the single entry node representing the current

state to the single exit node representing the end state (objective) via a series of

actions. Each unique path from the start node to the end node represents a

potential plan that the agent can execute to achieve the objective. The process

involves four steps:

1. Check the difference between the current state and the goal state. The

difference between the two states will be the attributes that need to be

changed in order for the objective to be achieved. These attributes are

referred to as objective attributes. In some instances, an objective might

be partially completed when it is assigned to the agent, in which case the

number of objective attributes will be less. If no objective attributes are

found, no difference exists between the initial and goal states. Thus, the

agent has already achieved the objective and no plan is necessary.

2. Perform demand-driven action searching. From step 1, the process has

compiled a list of objective attributes. A search is initiated for actions

whose postconditions modify these objective attributes. It can be said

that the objective demands actions that affect the objective attributes.

The actions found are referred to as candidate actions because they

represent actions that may result in the accomplishment of the objective.

Generally speaking, it is not possible to determine whether any of these

candidate actions will definitely lead to the objective. This will be

47

determined later. However, depending on the complexity of the

postconditions, it may be possible to eliminate candidate actions that

have no possibility of leading to the objective by optimizing action

postconditions with objective preconditions. These candidate actions are

linked to the objective, forming the end of a directed graph with the

objective representing the terminal node.

3. Calculate the backwards state. For every candidate action linked to the

objective, it is possible to calculate the state existing before the action

was executed (this is known through the preconditions). The result is a

list of intermediate states; an agent in one of these states could execute

the appropriate candidate action and achieve the objective. If the agent’s

current state matches one of these intermediate states, the agent has

found a potential plan of some sequence of actions that may lead to the

goal state. Since a path between the current state to the end state has

been achieved, this path is considered finished.

4. Develop the backwards chain. From each set of intermediate states that

do not match the current state (i.e., the action cannot be directly

executed by the agent), go to step 2, treating the intermediate state as

the objective. This recursively traces plans from the objective to the

agent’s current state. A limit on the number of steps in a plan will

prevent infinite backwards chaining.

This process may incorporate all action levels, or hone in and plan at a specific

action level to build plans of different granularity. At the end of this process, all

“dangling” paths that did not find a way to reach the agent’s current state are

eliminated. This may occur because a particular resource was not available. For

instance, the action Drive can be used to transport items, but only if a car is

48

available. If no graph path backtracked completely from the objective to the agent’s

current state, two possibilities exist. First, no combination of actions that the agent

can execute will accomplish the objective. Second, a combination of actions to

reach the objective exists, but was not found because the maximum number of

steps allowed in the plan was set too low in step 4. If a path exists between the

agent’s current state and the objective state, at least one potential plan exists. Each

unique path represents a potential plan. Validating the plan can be done by

analyzing each action, starting with the current state to the finish state to ensure

all the preconditions and postconditions match. Alternatively, the agent can

perform the alternative plans in hyper-real-time. The actual path selected among

the potential plans is agent dependent. For instance, the agent may want to

maximize time or minimize monetary cost.

There are several important advantages to using this approach. First, the

backwards chaining constrains the plans generated so as to reduce the

combinatorial explosion that would occur if planning in a forward chaining manner.

Secondly, the planning graph is a convenient way to organize plan alternatives as

each path is unique path from the current state to the object represents a different

plan that will achieve the goals of the agent. All precondition dependencies are also

explicitly laid out and specified in the planning graph. Finally, the graph provides

an easily traversable structure for further analysis, such as determining the effects

of events.

4.5.2 EXAMPLE

Consider the agent Smith waking up in the morning wanting to eat breakfast. Since

Smith is hungry when he wakes up, the objective state that Smith wants to

accomplish is defined as the condition “

environment and other ADCUE components, including available resources and

actions, are included in

process may initially develop a plan with coarse granularity.

Figure 1: Breakfast scenario components

49

fined as the condition “Smith.Hungry equals false”. The

environment and other ADCUE components, including available resources and

actions, are included in Figure 1. Using only high level actions, the planning

y develop a plan with coarse granularity.

: Breakfast scenario components

”. The

environment and other ADCUE components, including available resources and

. Using only high level actions, the planning

50

As seen in the Figure 2, the high level planning graph consists of matching high

level actions that lead from the agent’s current state (Smith is in bed) to the

objective state (Smith is not hungry). Notice that the attribute in the objective state,

Smith.Hungry was traced back to the action Eat Breakfast, which in turn, was

traced back to the action Get out of Bed. Since this action can be directly executed

by the agent in its current state, the planning process finishes, yielding a high level

plan. If desired, this plan can be expanded in more detail by running the process on

the low level actions associated with Eat Breakfast. To do this, the action Eat

Breakfast’s preconditions are treated as the current state and the postconditions

are treated as the objective state. Figure 3 is the corresponding low level planning

graph. Notice that agent Smith has several different options for eating breakfast

now.

Current State:
Smith.Hungry == true
Smith.Awake == false

Get out of
Bed

Eat
Breakfast

Objective State:
Smith.Hungry == false

Preconditions:
• Smith.awake == false
Postconditions:
• Smith.awake = true

Preconditions:
• Smith.hungry == true
• Smith.awake == true
Postconditions:
• Smith.hungry = false

Figure 2: Planning graph representing the high level plan

51

Figure 3: Planning graph representing low level plan

4.5.3 REPLANNING

In ADCUE, replanning because of the occurrence of an expected event can be

performed via two methods. If multiple plans exist on the planning graphs (more

than one unique path from the current state to the objective exist), it may be

possible to select a different, already-generated plan path that is unaffected by the

event. For instance, if it is known that Milk is spoiled, the agent may select the

action Order McMuffin® instead. If the event has far-reaching effects, it may be

better to start the process of planning from scratch, considering the postconditions

of the event from the start of the process. In this situation, it is possible that the

alterations from the event postconditions will give the planner the information

necessary to generate new action links between states that plan around the effects

of the event.

Drive to

McDonalds
Order

McMuffin

Cook
Pancakes

Eat
Meal

Pour
Milk/Cereal

Get out of
Bed

High Level Action:
Eat Breakfast

Initial State:
Smith.Hungry == true
Smith.Awake == false

Objective State:
Smith.Hungry == false

52

4.6 INTRODUCTION TO SLICING

Now that the ADCUE framework has been presented, each component described in

detail, and the methods of planning have been described, it is important to

investigate the mechanism that operates within the framework and enables the

agent to automatically determine the consequences of events. This mechanism is

the technique of slicing.

4.6.1.1 HISTORICAL PERSPECTIVE

Originally designed as a technique to aid debugging programs, slicing involves

analyzing a particular statement in terms of data and control dependencies [34].

Slicing constricts the view of a program’s source code to a small piece, typically a

single statement called a slice, in conjunction with all the other statements in the

program that can potentially affect the slice. In essence, by removing or “slicing

away” everything irrelevant to the statement under analysis, a debugger can ignore

all extraneous details. The remaining statements can be categorized as data

dependencies, statements that modify the data used by the slice, or control

dependencies, statements that define the flow of execution to the slice. Slicing can

be performed in a backwards or forwards manner. Backwards slicing shows how

previous statements affected the current slice; forward slicing shows how the

current slice influences future program statements.

4.7 SLICING APPLIED TO PLANNING

In addition to applications in debugging, slicing is a technique that can be applied

to planning. Instead of working on statements in a program, slicing can be

53

performed on the steps in a plan. Data dependencies become dependencies in

environment conditions and control dependencies become dependencies in

previously executed steps. By isolating single actions, a slice will show the

relationship between conditions in the environment (data dependencies) and the

flow of previous actions (control dependencies). In a similar way that slicing can be

used to analyze a running program, this technique of slicing can be applied when

introducing an event into an already executing plan. By tracing the causes of the

event upstream (backwards slicing) and the effects of the event downstream

(forwards slicing), the dependencies can show which parts of the plan will be

affected by the event. Adapting the process of slicing to planning in this manner, an

agent can begin to dynamically analyze the relationships between the effects of an

event and planned actions, inferring consequences along the way.

4.7.1 PLAN REPRESENTATION

To apply the technique of slicing to the domain of planning, plans must be in a

format similar to that of a program’s source code. A program always has a defined

start and end of execution with a sequence of instructions to execute in between.

Likewise, plans can be represented as steps, or actions, stored in nodes of a graph.

The entry node represents the beginning of the plan (the current state) and the exit

node represents the end of the plan (the desired or goal state). Relationships

between nodes are specified by action preconditions and postconditions. The

execution of an action depends upon preconditions and is characterized by the

resulting postconditions. Preconditions represent control dependencies because

they define when it is possible for an action to run; postconditions represent data

dependencies because it reflects the effects of the action’s execution on the

54

environment. Through this representation, the technique of slicing can be applied

to the graph to analyze the plan when unexpected events occur.

4.8 PROPOSED APPROACH ALGORITHM

When an event occurs, the proposed approach needs to answer two questions: 1)

Does the event affect the plan? 2) If so, what are the effects of the event on the

plan? To answer these questions, a customized intersection operator is proposed for

use in conjunction with the slicing technique described in previous sections.

4.8.1 INTERSECTION OPERATOR

The intersection operator ∩ is used to detect whether an event affects the plan. It

takes two parameters, an action and an event. Conceptually, the intersection

operation detects conflicts between event postconditions and action

preconditions/postconditions. If the intersection operator results in an empty set,

the event does not directly affect the action; if the intersection results in a non-

empty set, a potential conflict exists between the action and the event.

Mathematically, the intersection operator between Event E and Action A is defined

as:

� � � � ���	� � �
 � ��
�	� � �

� 	�. ��
����������
 � �. ������������

� 	�. ��
����������
 � �. ��
����������

����� �. ��
����������
, �. ��
����������
, �. ������������
 ��� ���������
��

55

As can be seen, the intersection operator is composed of two separate intersections

that are subsequently joined with a union. This represents the two different

conditions that must be true for an action to remain unaffected by an event. First,

the event must not affect any of the action’s preconditions and second, the event

must not affect any of the action’s postcondition attributes. In laymen’s terms, the

first part of the intersection operator can be read as: if the event modifies attributes

used to determine if the action can be executed, the event may prevent the agent

from using the action in the plan because the preconditions may no longer be

satisfied. The second part detects a potential conflict between the event and action

postconditions: both are attempting to change the same attribute to potentially

different values.

4.8.1.1 TESTING INTERSECTION HYPOTHESIS

In effect, an intersection operation between an event and action that results in a

non-empty attribute set is proposing a null hypothesis. This null hypothesis states

that based on the overlap between event and action attributes, the action affects

the event. For instance, consider Case 1 in Figure 4 with action Sunbathe and the

event Rainburst. Both set the attribute Smith.Wet; the difference is that Sunbathe

sets this attribute to false and the event Rainburst sets the value to true. Because

the attributes are being set simultaneously by different components, a situation

which is referred to as attribute overlap, the intersection operator will hypothesize

that the event affects the action. For Case 1, this is a valid hypothesis. However, in

other situations the null hypothesis may not be true. If the action Sunbathe is

swapped with Swim as seen in Case 2, the both the action and event modify the

attribute Smith.Wet – but this time they both set the value to true. In this case, the

56

null hypothesis should be rejected because although the attributes overlap, there is

no conflict between the action and event.

Since the intersection operator only reveals a potential conflict between an action

and event, the null hypothesis generated must be tested. In simple cases, such as

the beach example, this can be done without much effort. However, in more

dynamic situations where actions may result in different effects depending on

various environmental factors, it may not be as straightforward. In these instances,

it may be necessary to simulate the rest of the plan and examine the expected

future values of the attributes to see if a conflict exists. Based on calculated future

attribute values, it is possible to accept or reject the null hypothesis that the event

affects the action.

In general, the intersection operator can affect actions in one of three possible

levels: impossible, delta, or null. An event may change attributes in the

environment such that the preconditions to an action are no longer satisfied, thus

Action

Sunbathe

Event

Rainburst

Smith.Wet

True False

Case 1

Null Hypothesis Accepted

Action

Swim

Event

Rainburst

Smith.Wet

True True

Case 2

Null Hypothesis Rejected

Figure 4: Null Hypothesis Validation

57

making it impossible to execute the action. Another possibility occurs when the

event changes the postconditions of the action, thus producing a delta, or change

in the effect of the action. Finally, a null result indicates the event has no effect on

the action.

4.8.2 PLAN SLICING

The combination of the slicing technique and the intersection operation provides a

powerful pair of tools for analyzing the plan stored in the planning graph to find

any consequences of unexpected events. The algorithm for determining whether an

event affects the plan can be described with the pseudo code in Table 2:

Table 2: Pseudo code for determining plan affectedness

Determine Plan Affectedness by Event E

Set Plan P.Affected to false
Foreach Action A in Plan P
 If (A ∩ E) not empty
 Set Plan P.Affected to true
 Stop

This pseudo code checks every step (action) in the plan to see if the action will be

affected by the event. If none of the steps in the plan are affected, the plan as a

whole is unaffected. Once it is determined that an event will affect the plan, the

consequences of the event can be inferred by determining the difference between

executing the plan with the event versus without the event. This difference can be

extracted from the list of conflicted attributes provided by the intersection operator.

The pseudo code for this procedure can be found in Table 3.

58

Table 3: Pseudo code for determining event consequences

Determine Consequences of Event E

Foreach Action A in Plan P
 If (A ∩ E) not empty
 Foreach Attribute Attr in (A ∩ E)
 Add Attribute Attr to List diff

Return List diff

4.8.3 EXAMPLE

Figure 5: Planning graph with events

Consider a plan for Agent Smith to wake up in the morning and eat breakfast. A

number of different actions are available, such as Pour Milk And Cereal, Cook

Pancakes, and Order McMuffin®. Several events can affect the plan, including Sour

Drive to

McDonalds
Order

McMuffin

Cook
Pancakes

Eat
Meal

Pour
Milk/Cereal

Get out of
Bed

High Level Action:
Eat Breakfast

Initial State:
Smith.Hungry == true
Smith.Awake == false

Objective State:
Smith.Hungry == false

Sour Milk Free McMuffin

Sunny Forecast

59

Milk, Free McMuffin®, and Sunny Forecast. See Figure 5 for a graphical

representation of the plan with injected events listed in bubbles.

Given the above scenario, it is desirable to know how each of the three events

affects the system:

• Pour Milk and Cereal ∩ Sour Milk: This event represents Agent.Smith walking

to the refrigerator in the morning and discovering that the milk gone bad.

The event Sour Milk will make it impossible for the action Pour Milk and

Cereal to be executed since one of the preconditions of the action Pour Milk

is “Milk.Spoiled not equals true”.

• Order McMuffin® ∩ Free McMuffin®: This event simulates Agent.Smith

receiving a “buy one, get one free” McMuffin® deal at McDonalds. The event

Free McMuffin® produces a delta or change in the postconditions of the

action Order McMuffin® by doubling the number of meals. Notice, that not

all unexpected events are detrimental; a free McMuffin® is a pleasant

surprise (unless agent Smith is on a diet).

• Drive ∩ Sunny Forecast: The final possibility is null and is seen when the

event Sunny Forecast is heard during the agent’s Drive action. In this case,

the event has no effect whatsoever on the action. Thus, the event effects on

the plan is null and the affected attribute set is empty.

4.9 SUMMARY

This chapter presented the methods used to determine the consequences of an

event on the plan. The two main components introduced were slicing and the

intersection operator. While slicing provides an intuitive method of analyzing plan

60

dependencies, the intersection operator calculates if and how much an event affects

steps within the plan. The proposed solution of utilizing slicing and the custom

defined intersection operator to within a plan consisting of nodes in graph creates a

powerful reasoning mechanism whereby consequences of unexpected events can be

automatically determined. Furthermore, the ADCUE framework was presented as

the combination and logical extension of several preexisting paradigms. These

paradigms include CxBR, slicing, CxG, and GraphPlan. ADCUE emphasizes robust

planning, the ability to analyze events, dynamic transitions that do not require

hardcoded contingency plans, easy upgrades, and real-time simulation. To develop

such a model, ADCUE uses the components Attribute, Resource, Condition, State,

Objective, Action, Event, Agent, and Environment. By augmenting proven

techniques and applying them to new problems, the reasoning model provides a

comprehensive solution to the problem of automatically determining the

consequences of unexpected events.

61

CHAPTER 5: IMPLEMENTATION

This chapter describes the implementation of the ADCUE approach presented in

the previous chapter. First, the environment and the encapsulation of ADCUE into

a library are discussed. Secondly, desired usage and system input/outputs are

overviewed. Thirdly, the architecture of the code are investigated, including class

diagrams of key components, followed by a fourth section providing how the

ADCUE algorithm operates.

5.1 LIBRARY ENVIRONMENT

The environment to implement ADCUE in was Microsoft Visual Studio C++ 2005 on

a Windows platform. C++ was chosen for purposes of efficiency and speed, and the

Microsoft IDE was chosen for productivity. While the test cases should not require

heavy computational resources, it is expected that in a non-trivial real-world

situation, ADCUE will be expected to perform in real-time in complex simulations.

While C++ is not inherently as portable as other popular languages such as Java,

effort was extended to ensure that all code written was cross-platform so that

future expansions could have a wide range of operating environments from which to

select. To encourage use and reuse in additional projects, a strict coding and

commenting standard was followed. The freely available tool Doxygen was used to

generate extensive documentation from specially formatted comments within the

code. With these aids, it should prove relatively easy for a competent C++

programmer to review the documentation and write a program using ADCUE with

minimal work.

62

5.2 LIBRARY USAGE

The ADCUE library allows the simulation of goal-oriented agents operating within

an environment as described earlier. It is composed of the library interface and the

simulation. To keep consistent terminology, the term simulation will be used to

refer to the set of ADCUE components grouped together as a cohesive package. It

also refers to the execution of the ADCUE components through time and the

injection of events into the system. The library provides methods for loading created

simulations, controlling the simulation, and injecting events into the system for the

agent in the simulator. The simulation is created and stored through a series of

files located in a directory, each one representing a component in the final

simulation. In this manner, it is easy to create and modify the simulation data. At a

later point in time, a Graphical User Interface may be built to further simplify the

creation of ADCUE simulation components. To use the ADCUE library, one must

load the directory containing the simulation files and then run the simulation,

optionally injecting events and retrieving the current state of the simulation. The

ADCUE library provides an agent access to a rich representation of the environment

and the ability to use ADCUE’s built-in functionality to reason about the

consequences of unexpected events.

5.2.1 SYSTEM INPUTS

As mentioned, the inputs to ADCUE are the simulation files stored in a single

folder. The purpose is to provide an easy way to create/modify/delete ADCUE

components. The prefix for each file is the type of component. For instance, the file

containing the representation for the resource Milk would be named

63

“Resource.Milk.txt.” Each component file should completely describe the

component; as such, each component has an individualized file format

It is important to mention the notation used to describe the file formats. Generally,

each non-empty line in the component file specifies an attribute or some other piece

of information about the component. Most lines begin with a label followed by a

colon; this identifies the rest of the line as one of the pre-defined pieces of

information. The remaining line usually has a number of pre-defined tags that must

be supplied. For example, text enclosed between <less than and greater than signs>

is a tag representing a description of the user-defined text that must be inserted.

For example, when the tag <Attribute Name> is encountered, the user building the

component insert a name for the attribute to replace the tag, less than and greater

than signs excluded. [Square brackets] operate in a similar fashion, except they

represent optional tags. Thus the tag [Units] can either be supplied or omitted

depending on if the user wants to specify units for the attribute. Quotes are used to

allow spaces and must be used where specified. For instance to use the name

Weather Conditions for the tag “<Name>”, the text in the file should read “Weather

Conditions”. { Curly brackets } surrounding a line represent a block: the line is a

template that can be used several times in a row (with different values for the tag).

For example, curly brackets are used to associate many attributes with a

component.

5.2.1.1 ATTRIBUTE

Because most ADCUE components can be described with attributes, it makes sense

to first describe how an attribute for a component is specified. A component spans

one line; the template is as follows:

64

{ Attribute: <Type> “<Name>” <Initial Value> [“<Uni ts>”] }

The four tags are:

• <Type>: Specifies the type of attribute. Valid values include Number, Text,

and Boolean. Number includes both integer and floating point values. Text

may be any sequence of characters enclosed between “quotation marks”.

Boolean types may only be true or false.

• “<Name>”: A string representing the name of an attribute. For clarification,

the space is considered a valid character so valid attribute names may

include “Net Worth”, “Last Name”, etc.

• <Initial Value>: Attributes have an initial, default value when the ADCUE

system is first started. The value must match the type, so if the type is

Number, values such as 3.14 or 10 are valid, but “pi”, “1”, or false are not.

• [“<Units>”]: It is beneficial to allow the user to link units of measure to a

particular attribute. This is optional as indicated by square brackets. Note

that units are specified within a string; this is done so complicated units

may be used, such as “kg m/s.” Omitting the units results in a unitless

attribute. It is encouraged to specify the units if it is known to clarify the

system.

5.2.1.2 ENVIRONMENT

The environment file contains attributes globally affixed to the whole simulation

and a list of agents to use in the simulation. Because only one environment may

exist at a time, there is no need to differentiate between multiple environments. As

65

a result, the environment is not named and is stored in the file “Environment.txt.”

The format for this file is as follows:

{ Attribute: <Type> “<Name>” <Initial Value> [“<Uni ts>”] }

{ Use: <Agent Name> }

Update:

From this file format specification, three blocks are used: a list of attributes, a list

of agents to use, and an update function. The attribute template has already been

described. The Use statement imports agents into the simulation. For example, the

statement:

Use: Smith

Loads the agent specified in the file “Agent.Smith.txt” into the ADCUE system and

activates it so it can begin to execute actions. Other agent files may be stored in the

directory and loaded by the system, but they will not be used until the environment

explicitly places them in the simulation via the Use command. The Update is a

standalone line that starts the final block of the file. Every line following the block

is part of an update routine that is designed to run every cycle in the simulation.

This allows the environment to regulate itself, such as raising the temperature as

time elapse during the day. However, this is not currently implemented; it is

provided only as a provision for future implementations. An example environment

component file is:

Attribute: Number "Temperature" 75 "deg F"
Attribute: Number "Refrigerator.Temperature" 40 "de g F"
Attribute: Text "Forecast" "Night"

Use: Agent.Smith

Update:

66

Through this example, the environment is described with attributes for the

temperature of the room, the temperature of the refrigerator, and the weather

forecast. Initial values are specified as 75° F, 40° F, and “night”; furthermore, these

attributes can take on new values during the execution of the simulation. The

environment is further described by introducing the agent Smith into the system.

5.2.1.3 AGENT

The agent contains two blocks: objectives and attributes:

{ Objective: <Name> }

{ Attribute: <Type> “<Name>” <Initial Value> [“<Uni ts>”] }

An objective block lists objectives that must be achieved in the order listed. The

conditions that comprise the objective state are listed in the respective files named

“Objective.<Name>.txt”. An example agent component file is “Agent.Smith.txt”:

Objective: Not Hungry

Attribute: Text "Location" "Bed"
Attribute: Number "Weight" 150 "lbs"
Attribute: Boolean "Hungry" true

5.2.1.4 OBJECTIVE

The objective file format has one block that lists conditions that must be true before

the objective can be considered achieved. The conditions in the objective need not

be satisfied in any particular order; once all conditions are true, the agent considers

the objective accomplished successfully.

{ Condition: <Attribute Name> <Relationship> <Attri bute Value> }

67

As mentioned in the previous chapter, a condition is the relationship between an

attribute and its value. The attribute name must be fully qualified. This means that

the component type must be specified as well as the name. For instance, if the

condition attribute we want to satisfy is Smith.Hungry, the component type must be

prefixed: Agent.Smith.Hungry. Because objectives are assigned to particular agents,

it is desirable to have reusable objectives that can be assigned to more than one

agent. Thus, the me component type shortcut was introduced. Instead of statically

setting the agent type at runtime, the agent can be determined dynamically at

runtime. For instead of limiting the objective to Agent.Smith.Hungry, the shortcut

me.Hungry can be used. When the objective is assigned to any agent, the prefix is

automatically added by ADCUE. In this manner, the objective can be assigned to

Agent.Smith and Agent.Jane without modification, as seen in Figure 6.

Agent.Smith.Hungry == false

Agent.Jane.Hungry == false

Agent.Smith

Agent.Jane

me.Hungry == false

Agent.Smith

Agent.Jane

Objectives Agents

Figure 6: Assigning reusable “me” objectives

Reusable “me” Objectives

68

The relationship may be explained in the following way: Check if <Attribute Value>

is <Relationship> to the value contained in <Attribute Name>. The relationship

between the attribute’s value and the value specified by the user condition may be

one of the following values (the symbols are listed in parenthesis).

• Equals (==)

• Not Equals (!=)

• Less or Equal (<=)

• Greater or Equal (>=)

• Less than (<)

• Greater than (>)

An simple example of an objective is “Objective.Not Hungry.txt”:

Condition: me.Hungry == false

Notice this example makes use of the me shortcut so the Not Hungry objective can

be assigned to multiple agents. It is important to note that in these cases, any

agent to which this objective is assigned must have a Boolean attribute named

Hungry.

5.2.1.5 RESOURCE

The resource file format is similar to the environment format seen earlier. It

contains the initial amount for the resource, the attributes associated with the

amount, and an update routine (currently unused). The file format is:

Amount: <Number Value> [“<Units>”]

{ Attribute: <Type> “<Name>” <Initial Value> [“<Uni ts>”] }

69

Update:

All resources must start out with an initial numeric amount with the units

optionally specified. A list of attributes may also be associated with the resource.

The update routine, as is the case with the environment update routine, is executed

once per simulation cycle and is used to allow the resource to manage itself. In the

example of the resource Milk, the milk carton can detect its location and

subsequently update its temperature depending on whether it is located in or out of

the refrigerator. This update functionality is currently provided for future expansion

of the model. An example of the resource file is:

Amount: 1 "gal"

Attribute: Boolean "Sour" false "gal"
Attribute: Number "Temp" 40 "deg F"
Attribute: Text "Location" "Refrigerator"

Update:

if (me.Location == "Refrigerator ")
{
 me.Temp -= (me.Temp - Environment.Refrigerator. Temp) / 100;
}
if (me.Location != "Refrigerator ")
{
 me.Temp += (Environment.Temp - me.Temp) / 100;
}

if (me.Temperature > 80)
 inject Event.Sour Milk;

As can be seen, self-describing components are able to update their own attributes

and subsequently inject events such as Sour Milk if the carton was left outside the

refrigerator too long. Notice the use of the shortcut me is used to refer to the

current resource, thus allowing the resource to be easily renamed at a later point in

time..

70

5.2.1.6 ACTION

Actions consist of preconditions and postconditions. The format is:

{ Condition: <Attribute Name> <Relationship> <Attri bute Value> }

Postconditions:
{ <Attribute Name> <Operator> <Value> }

Because preconditions are similar to objective conditions in that they must be

satisfied before the action can be executed, the preconditions are listed in the same

format as those in the objective component files. The postconditions consist of

operations on attributes in the environment, referenced by the attribute name. The

<Operator> can take on one of the following operators: “=”, “+=”, “-=”, “*=”, “/=”.

Currently, only constant values are allowed. However, for increased flexibility in the

future, values stored in attributes will be allowed. An example of an action is

“Action.Eat Food.txt”:

Precondition: me.Hungry == true
Precondition: Resource.Meals.Amount > 1

Postconditions:

Resource.Meals.Amount -= 1
me.Hungry = false

Again, the shortcut me is used to refer to the agent executing the action.

5.2.1.7 EVENT

The file format for an event is the same as an action, except the event file format

omits the preconditions. Thus, an event such as “Event.Sour Milk.txt” migh consist

of:

Postconditions:

71

Resource.Milk.Sour = true

5.2.2 SYSTEM OUTPUT

The output of the system is a planning graph and, optionally, the parts of the

planning graph that are affected by events. To facilitate the clarity of the generated

graphs and the consequences of events on a plan, ADCUE uses an external tool to

generate graphical representations of the graphs and the effects of events on

actions in the plan. This is described in more detail in the testing section, as it is

used to validate ADCUE’s operation.

5.3 ADCUE ARCHITECTURE

The ADCUE system consists of several different packages, each with a separate

functionality. The modules are divided into three separate levels as seen in Figure

7. The key package is the ADCUE Core, which contains the functionality to

load/manipulate/reason with the ADCUE components. This level is referred to as

the model level as it contains the implementation of the ADCUE approach. At the

scenario level, any number of scenario packages can be developed which use

ADCUE to implement situations in which agents automatically reason about the

consequences of events. Two supporting packages, the Zebulon base library and the

Google hashmap are used extensively. The Zebulon base library is a library

developed at the Robotics Laboratory at UCF to provide high-level cross-platform

commonly used functionality for C++ programs. It includes classes to work with

arrays, files, and parsing. The Google hashmap, developed by Google, is widely

72

regarded as an extremely fast and efficient hash table, which is used to

store/retrieve ADCUE components by names.

The remainder of this implementation chapter focuses on the model level. The

ADCUE Core is composed of a diverse set of classes. The first set of classes handles

the representation of the ADCUE components. These classes include: Attribute,

ADCUEComponent, Environment, Agent, Action, State, Condition, Routine, Block,

and State. Each class is examined in detail in upcoming sections. The relationship

between these classes can be seen in Figure 8. Notice all components derive from

ADCUEComponent, which has an array of Attributes. The other set of classes are

for generating/analyzing plans and is discussed later.

Scenario 1

ADCUE

Core

Scenario 2

Zebulon

Base

Google

Hashmap

Simulation

Level

Model

Level

Supporting

Level

Figure 7: High level ADCUE package structure

73

5.3.1 ATTRIBUTE

The Attribute class (see class diagram in Figure 9) is the core of the ADCUE

system. Nearly all ADCUE components can be described at least partially through a

set of attributes. An attribute can hold textual, numeric, or a Boolean value as

specified by the AttributeType enumeration. The Attribute class stores two sets of

values: the initial value and the current value. The initial value is the value the

attribute was first assigned and is stored because of its potential usefulness later in

the simulation. The current value tracks how the attribute changes over time. The

actual values are stored in an AttributeValue union that stores a text string,

number, or Boolean value.

Figure 8: ADCUE representational class diagram

74

It is also possible to store units

with an Attribute. Units are

represented using strings, thus it

can store any unit of measure.

Additionally, any custom

information can be associated

with the attribute.

5.3.1.1 ADCUECOMPONENT

Since all ADCUE components

have a name (except the

environment) and a list of

attributes, it is beneficial to

encapsulate this functionality

once within an abstract base

class. The abstract base class

created for this purpose is the

ADCUEComponent. This class

takes care of the tedious

management of storing, adding,

and modifying attributes in addition to storing and retrieving the component name.

A class diagram of this base class can be seen in Figure 10.

asdf

Figure 9: Attribute class diagram

75

5.3.2 ENVIRONMENT

The Environment class (see Figure 11 for class diagram) is the class that has the

responsibility of managing all other components in the ADCUE system. It handles

loading the ADCUE components from file, linking and storing all components,

retrieving them as necessary, and many other miscellaneous functions to control

the environment. In fact, the Environment class serves as the point of contact for

all other components in the system as it is the container in which all components

are stored. The environment also calculates whether objective states have been

reached yet so the agent knows when to finish the simulation.

Figure 10: ADCUEComponent class diagram

76

Figure 11: Environment class diagram

77

5.3.3 AGENT

An Agent class (see Figure 12 for class diagram) is described through a set of

attributes and available actions to execute. It operates within the environment and

can produce/consume/synthesize resources. The Agent class does not select which

action to execute, this processes is done through the Environment class. However,

the Agent class does allow access to the action the agent is currently executing.

Figure 12: Agent class diagram

78

5.3.4 ACTION

The Action class (see class diagram in Figure 13) is an executable black box that

runs only under specific preconditions and changes the world through a set of

postconditions. For more efficient processing and to organize the actions in a logical

fashion, actions are grouped hierarchically by the ActionLevel enumeration. At the

top level, a High level can have a number of Low level actions. The High level action

can be thought of the abstract “what needs to happen” while the Low level actions

can be thought of as “how to accomplish what is needed.”

Figure 13: Action class diagram

79

5.3.5 ROUTINE

Many of the ADCUE components, such as Action, Event, Environment, Resource,

etc, have the ability to change the environment. This is accomplished through

postconditions stored in a Routine class (see Figure 14 for the class diagram). A

routine is divided into a number of Block classes, each of which contains one or

Statement classes. A statement is the lowest level and is executed as a single

logical function. The purpose of a block is to allow conditional execution of groups

Figure 14: Routine, Block, Statement, Event, & Resource class diagram

80

of statements. For example, a group of statements may need to be executed only if

the temperature dips below freezing.

5.3.6 EVENT & RESOURCE

Both the Event and Resource classes inherit from Routine and

ADCUEComponent, as can be seen

in Figure 14. From the

ADCUEComponent, the event or

resource inherits a name and

attributes from the Routine class, an

event inherits functionality to define

postconditions and execute them

while the resource inherits

postconditions to update itself on a

timed interval.

5.3.7 STATE & CONDITION

The State class defines a set of

conditions that must be true to be in

the state. Each condition is stored in

a Condition class that links an

attribute in the environment to a

value. Once all conditions associated

with a state are evaluated to be true,
Figure 15: State and Condition class

diagram

81

the state is said to be active. States represent objectives and allow the agent to

determine when it has reached the objective state. The class diagram can be seen in

Figure 15.

5.4 ADCUE ALGORITHM OPERATION

The ADCUE algorithm that determines the consequences of events is the

combination of the intersection operator and the technique of slicing. Remember

that the intersection operator can determine whether or not an action is affected by

an event. However, this operation only checks one action (or step) in the plan.

Slicing allows us to traverse the planning graph (forwards and backwards) and use

the intersection operator on relevant nodes, thus examining upstream and

downstream effects. Several classes aid with this process: Planner, PlanGraph, and

PlanNode. The relationship and class diagrams for these classes can be seen in

Figure 16.

82

5.4.1 PLANNINGGRAPH & PLANNODE

A plan in ADCUE is stored in the PlanningGraph class as a bi-directional directed

graph. As is the case with Contextual Graphs, the planning graph contains one

entry node referred to as the initial state and a final state representing the objective

Figure 16: Planner/PlanGraph/PlanNode class diagram

83

state. All other nodes in the planning graph are of class PlanNode and represent

ordered steps of the plan. Each PlanNode represents an action with preconditions

and postconditions. Any path from the initial state to the objective state should

include all the steps necessary to bring about the agent’s goal. While execution

flows forward, the bi-directional links allow the graph to be traversed either forward

or backwards for analysis purposes.

It is important to note that the PlanningGraph can contain many different paths

and action steps to achieve the objective state. It is possible that some paths and

actions may never be selected because a resource or condition is lacking. However,

these paths and actions must be included in case the resource or condition

becomes available at a later time.

Action 1

Action 3

Action 2

Initial State

Objective State

Figure 17: PlanningGraph with three PlanNodes

84

5.4.2 PLANNER

The Planner class handles generating plans and analyzing plans with respect to an

event. Interfacing to the environment, the planner uses the actions from the agent

performing the planning to generate a plan that achieves the agent’s objectives.

Currently, the planner supports only generating simple plans. Larger, more

complex plans with multiple objectives are beyond the capabilities of the planner

and must be programmatically generated using the PlanningGraph class API.

5.4.3 ADCUE ANALYSIS ALGORITHM

The algorithm for plan analysis that determines the consequences of events on a

plan is handled through the previous three classes. When an event is introduced

into the plan, the technique of slicing used to apply the intersection operator to

nodes in the planning graph. This corresponds to testing each step in the plan to

see how affected it is by the event. Based on the results of applying these two

techniques to all the paths in the plan, potentially affected actions are flagged with

the attribute set returned by the intersection operator. The attribute sets contain

which attributes the event affects and are used to determine the exact

consequences of the event.

5.5 SUMMARY

The chapter concluded with an overview of topics such as the environment, high

level design, and usage of the ADCUE library. The library will serve as the backend

to all systems utilizing the ADCUE model, including the test cases presented in the

next chapter.

85

CHAPTER 6: TESTING

By testing ADCUE with several test cases, a measure of how well ADCUE detects

and determines the consequences of unexpected events can be obtained. This

chapter describes the method used to design, set up, and run the tests. This also

provides a metric with which the test results can be evaluated. Two separate testing

scenarios, each consisting of several tests, are subsequently investigated and the

results are concisely overviewed.

6.1 METHODOLOGY

The test procedure for ADCUE is specified as the evaluation of the ADCUE model

operating under different scenarios. Typical use-cases where a user or agent is

interested in the consequences of unexpected events are developed by creating a

scenario through the various ADCUE components that comprise the simulation. A

set of events are also specified for each scenario so they can be injected into the

system. The injection of an event into the scenario is treated as a test of how well

the system first detects and secondly determines the consequences of the event. For

the tests to be unbiased, the expected outcome is documented before the tests are

run and the actual results are subsequently compared. The tests performed in this

chapter range from easy to difficult so as to accurately determine at what point

ADCUE begins to fail.

86

6.1.1 GRAPHICAL VISUALIZATION

To aid the testing phase, ADCUE utilizes the AT&T GraphViz programs to generate

professional-looking directed graphs from formatted text files. Through this

visualization, it is much easier to see the planning graph and the steps of the plan

affected by events. Since ADCUE automatically uses Graphviz to produce graphs

from the internal testing procedures, these graphs can be considered part of the

result of a test. The legend for these graphs is:

• Boxes represent states, typically either the initial or objective state. Key

conditions that define the state are listed inside the box.

• Ovals represent action nodes, or individual steps in the plan.

• Arrows represent the flow of execution from one action to another,

indicating the passage of time.

• Diamonds represent events injected into the system.

• Filled ovals represent actions that are affected by events.

• Dashed arrows represent connect diamonds with filled ovals, indicating an

event is affecting an action.

6.2 TESTING SCENARIOS

Two testing scenarios were developed: a simple and complex one. The simple

scenario is the breakfast scenario used earlier and is used to validate the core

functionality of the model. The complex one represents a more dynamic

environment and is used to stress ADCUE, possibly to the point of failure. Both

87

scenarios are developed by specifying each ADCUE component in a file and storing

the file in a directory with the rest of the simulation components.

6.3 BREAKFAST SCENARIO

By now, the breakfast scenario used throughout the thesis should be familiar to the

reader, making it a good choice for a test scenario. All the expected outcomes to the

events mentioned have previously been predicted as an earlier example. To recap,

the graphical relationship between the ADCUE components can be seen in Figure 1

in the previous chapter and the events were described in section 4.8.3.

6.3.1 SIMULATION DESCRIPTION

This section contains a listing consisting of the simulation files for the breakfast

simulation. Each component name is bolded and followed by a horizontal rule and

the specification of the individual component.

Action.Clean House

Precondition: me.Awake == true
Precondition: Resource.House.Dirty == true

Postconditions:

Resource.House.Dirty = false

Action.Cook Pancakes

Precondition: Resource.Pancake
Mix.Amount >= 1
Precondition: Resource.Milk.Sour != false
Precondition: Resource.Milk.Amount >=
0.0625

Postconditions:

Resource.Pancake Mix.Amount -= 1
Resource.Milk.Amount -= 0.0625
Resource.Meals.Amount += 1

Action.Drive

Precondition: Resource.Car.Available == true
Precondition: Resource.Car.Gas > 1

Postconditions:

me.Location = "McDonalds"
Resource.Car.Gas -= 0.25

Action.Eat Breakfast

Precondition: me.Awake == true
Precondition: me.Hungry == true

Use: Cook Pancakes
Use: Drive
Use: Order McMuffin
Use: Pour Milk And Cereal
Use: Eat Food

Postconditions:

88

me.Hungry = false

Action.Eat Food

Precondition: me.Hungry == true
Precondition: Resource.Meals > 1

Postconditions:

Resource.Meals.Amount -= 1
me.Hungry = false

Action.Get Out Of Bed

Precondition: me.Location == "Bed"

Postconditions:

me.Location = "Bedroom"
me.Awake = true

Action.Order McMuffin

Precondition: me.Location == "McDonalds"
Precondition: Resource.Money.Amount >=
3.29

Postconditions:

Resource.Money.Amount -= 3.29
Resource.Meals.Amount += 1

Action.Pour Milk And Cereal

Precondition: Resource.Cereal.Amount >=
0.125
Precondition: Resource.Milk.Sour != false
Precondition: Resource.Milk.Amount >=
0.0625

Postconditions:

Resource.Cereal.Amount -= 0.124
Resource.Milk.Amount -= 0.0625
Resource.Meals.Amount += 1

Agent.Smith

Objective: Not Hungry
Objective: House Clean

Attribute: Text "Location" "Bed"
Attribute: Number "Weight" 150 "lbs"
Attribute: Boolean "Hungry" true

Environment

Attribute: Number "Temperature" 75 "deg F"
Attribute: Number
"Refrigerator.Temperature" 40 "deg F"

Attribute: Text "Forecast" "Night"

Use: Agent.Smith

Event.Free McMuffin

Postconditions:

Resource.Meals.Amount += 1

Event.Sour Milk

Postconditions:

Resource.Milk.Sour = true

Event.Sunny Forecast

Postconditions:

Environment.Forecast = "Sunny"

Objective.Cool Down

Condition: Environment.Temperature < 75

Objective.Get Up

Condition: me.Location != "Bed"

Objective.House Clean

Condition: Resource.House.Dirty == false

Objective.Not Hungry

Condition: me.Hungry == false

Objective.Sleep

Condition: me.Location == "Bed"

Resource.Car

Amount: 1

Attribute: Boolean "Available" false
Attribute: Number "Gas" 12 "gal"

Resource.Cereal

Amount: 2 "bags"

Resource.House

Amount: 1

Attribute: Boolean "Dirty" true

Resource.Meals

89

Amount: 0 "meals"

Resource.Milk

Amount: 1 "gal"

Attribute: Boolean "Sour" false "gal"
Attribute: Number "Temperature" 40 "deg F"
Attribute: Text "Location" "Refrigerator"

Resource.Money

Amount: 50 "dollars"

Resource.Pancake Mix

Amount: 5 "packages"

6.3.2 TESTS

Three events were tested with

the breakfast scenario: Sunny

Forecast, Sour Milk, Free

McMuffin®. All three were

tested with the plan shown in

Figure 18. To recap, the

initial state is Agent Smith

has woken up in the morning

and is in bed feeling hungry.

The objective is for Agent

Smith to no longer be hungry.

Three different paths exist for

the agent to choose, each one

representing a potential plan.

6.3.2.1 TEST 1: SUNNY FORECAST

The first test is to inject the event Sunny Forecast into the plan and observe the

results. The postconditions of this event consist of setting the attribute

Environment.Forecast to “Sunny”. Because none of the actions in the plan have

Figure 18: Breakfast scenario plan

precondition dependencies

weather, the expected outcome

whatsoever.

Figure 19: Breakfast scenario with Sunny Forecast event

As seen in Figure 19, the event

any actions shaded, an indication they have been affected by an event.

expected, the unexpected event

6.3.2.2 TEST 2: SOUR M

The second test is to inject the event

results. The postconditions of this event consist of setting the attribute

“true”. It is expected that both actions

90

precondition dependencies on the forecast and none of the actions affect the

weather, the expected outcome is for the event to have no consequences

: Breakfast scenario with Sunny Forecast event

, the event Sunny Forecast is not linked to any actions, nor are

any actions shaded, an indication they have been affected by an event.

expected, the unexpected event Sunny Forecast has no consequences on the plan.

MILK

test is to inject the event Sour Milk into the plan and observe the

results. The postconditions of this event consist of setting the attribute

It is expected that both actions Pour Milk And Cereal and Cook Pancakes

ions affect the

the event to have no consequences

: Breakfast scenario with Sunny Forecast event

s not linked to any actions, nor are

any actions shaded, an indication they have been affected by an event. Thus, as

has no consequences on the plan.

into the plan and observe the

results. The postconditions of this event consist of setting the attribute Milk.Sour to

Cook Pancakes will

be affected since they both have precondition

milk is good.

Figure 20

As seen in Figure 20, ADCUE correctly detected that Sour Milk affects the predicted

actions, leaving only one path open for the plan to succeed.

hyper-realtime and propagating the attribute values through time

determine that the event disables the ability to execute either

Thus, agent Smith can conclude that the consequences of the unexpected event

Sour Milk prevents him from making his own breakfast; he is forced to go to

McDonalds for a McMuffin®

91

since they both have preconditions that allow them to execute only if the

20: Breakfast scenario with Sour Milk event

ADCUE correctly detected that Sour Milk affects the predicted

ing only one path open for the plan to succeed. By executing actions in

and propagating the attribute values through time, the agent can

event disables the ability to execute either of the two actions

n conclude that the consequences of the unexpected event

prevents him from making his own breakfast; he is forced to go to

McMuffin®.

s that allow them to execute only if the

ADCUE correctly detected that Sour Milk affects the predicted

By executing actions in

, the agent can

of the two actions.

n conclude that the consequences of the unexpected event

prevents him from making his own breakfast; he is forced to go to

6.3.2.3 TEST 3: FREE M

The second test is to inject the event

results. This event represents

“buy one, get one free” deal for McMuffins

consist of incrementing

that the action Order McMuffin®

will now be getting two meals

Figure 21:

As seen in Figure 21, the results

and Eat Food actions are shown as affected, the two additional

And Cereal and Cook Pancakes

Why is this? Upon further in

92

MCMUFFIN®

The second test is to inject the event Free McMuffin® into the plan and

This event represents Agent.Smith arriving at McDonalds and discovering a

“buy one, get one free” deal for McMuffins®. The postconditions of this event

 the value of the attribute Meals.Amount by 1

McMuffin® and Eat Food will be affected because

be getting two meals instead of one.

: Breakfast scenario with Free McMuffin® event

, the results were not as expected. While both Order

actions are shown as affected, the two additional actions

Cook Pancakes are also shown as being affected by Free

Why is this? Upon further inspection, it appears that the specification of the plan

into the plan and observe the

arriving at McDonalds and discovering a

The postconditions of this event

by 1. It is expected

because agent Smith

event

Order McMuffin®

actions Pour Milk

Free McMuffin®.

spection, it appears that the specification of the plan

93

components have a logic mistake. While it is was desired that Agent.Smith only

receive a free McMuffin® through the “buy one, get one free” deal at McDonalds, the

postcondition “Meals.Amount += 1” does not do that. Instead, after thinking about

it, this postcondition of event Free McMuffin® increases the attribute Meals.Amount

regardless of whether the agent visits McDonalds. In order to rectify this mistake

and more accurate represent the “buy one, get one free” event, the event should be

injected into the system only for the paths where agent Smith visits McDonalds.

Viewed through this new perspective, it makes sense that the other two actions

were affected; the event Free McMuffin® is generating an additional meal no matter

what. This reveals an interesting side effect of ADCUE: it also makes errors in

specifying the preconditions clearly evident. Thus, while the results were not as

expected, the error ultimately lay in human error specifying the preconditions

rather than ADCUE. In this test, ADCUE performed as it should have.

6.4 UAV SCENARIO

While the breakfast scenario tested and verified that the core functionality of

ADCUE was indeed working as originally envisioned, a more challenging scenario

was designed to test the limits of the system and see how ADCUE could handle

something more than a toy problem. The scenario chosen was that of the Predator

Unmanned Aerial Vehicle (UAV) with a surveillance/reconnaissance mission. The

purpose of this scenario is to experimentally verify the validity of the developed

model in situations closer to the real world. Additionally, the selection of the UAV

scenario is beneficial because of its relative simplicity, clear objectives, and current

relevancy.

94

6.4.1 PREDATOR UAV

Unmanned Aerial Vehicles (UAVs) have a wide variety of uses within military

operations. UAVs can be considered a long-range airplane controlled remotely by a

base station. Among the several UAVs publicly used by the US military, the MQ-1

Predator UAV has achieved notoriety through its involvement in the Balkans [35],

Afghanistan [36], and Iraq [37] as an armed reconnaissance spy plane. Created by

the General Atomics Aeronautical Systems in 1994 [38], it is often referred to as a

MALE (Medium-Altitude, Long-Endurance) UAV. Although originally meant to

perform only surveillance tasks, in 2002, the Predator was authorized to carry out

armed reconnaissance as well [38]. This makes it an ideal platform to test in a

simulation.

6.4.1.1 PHYSICAL SPECIFICATIONS

All Predator UAV specifications have been converted to SI units for ease of

calculation and simulation. Because of the nature of the Predator’s missions and

involvement in various military ventures, it can be difficult to obtain exact figures

for the values of the specifications. This problem is further exacerbated by the

continued evolvement of the Predator UAV over the past decade. However, while the

purpose of the UAV scenario is not to perfectly model the airplane in questions, a

best effort has been put forth to ensure the accuracy of the figures listed here.

Sources of information include [39], [40], [41], [42], [43].

Table 4: Predator UAV Specifications

Attribute Value Attribute Value

Length 8.22 m Wingspan 14.8 m
Height 2.1 m Fuel 378.54 liters
Weight (empty) 512 kg Normal altitude 4572 m

95

Attribute Value Attribute Value

Weight (max) 1020 kg Loiter time at range 24 hours
Velocity (stall) 27.78 m/s Payload 205 kg
Velocity (cruise) 37.55 m/s Range 730.64 km
Velocity (max) 60.35 m/s Ceiling 7620 m

6.4.1.2 OPERATIONAL & WEATHER LIMITATIONS

The Predator does not tolerate difficult weather conditions very well [43]. During

take-off, cross winds should not exceed 7.72 m/s and headwinds should be below

15.m/s. Additionally, the Predator cannot fly in heavy rain or icy conditions. It can

handle only light turbulence. In terms of take-off and landing operational

requirements, the Predator requires a minimum runway length of 22.86 m by 1524

m.

6.4.1.3 EQUIPMENT/RESOURCES

The Predator carries a broad range of equipment in several different categories:

surveillance, emergency, and military. In addition to standard equipment, the

Predator can carry a payload of 205 kg to include any custom equipment required

by the mission.

• Emergency: Because the Predator is flown remotely through a data link

(either line of sight or satellite), the Predator has a feature that will fly it

home to the base station in the event of a data link loss. In the event of an

emergency, the Predator can be optionally configured to carry and use a

parachute [43].

• Surveillance: As surveillance and reconnaissance is the primary objective of

the Predator, it is well equipped to handle many different types of

surveillance activities. The nose of the plane carries a color video camera

96

used mainly for flight control. For surveillance purposes, the Predator

carries a variable aperture TV video camera and a variable aperture infrared

video camera for night-time use. The Predator is also outfitted with synthetic

aperture still-frame radar detection equipment.

• Military: On the defensive side, the Predator is built with a composite hull,

which reduces its radar signature. Furthermore, the Predator flies much

slower than typical military aircraft, so enemy radar detection equipment

may fail to detect it as a threat [44]. Offensively, the Predator is armed with

two AMG-114 Hellfire missiles that can attain speeds of Mach 5 to strike and

kill an armored target within a range of 8 km [45].

6.4.1.4 MILITARY THREATS

In addition to a poor tolerance to harsh weather, the Predator is susceptible to

several military threats. The most pressing threat comes from enemy aircraft and

Surface-to-Air missiles (SAMs). Fighter planes, such as the MiG 25, have engaged

and successfully shot down Predators. SAMs (Surface-to-Air missiles) have also

destroyed Predators. In addition to vehicle-mounted surface-to-air missiles such as

the PAC-2 Patriot missile, man portable missiles such as the FIM 92 B/C Stinger

can threaten a lower flying Predator. The Patriot missile typically has a range of 70

km and can reach an altitude of 24 km [46], while the smaller, shoulder mounted

Stinger has a range of 8 km and can only reach 3.8 km [47]. Given that the ceiling

of a Predator is higher than the vertical range of a Stinger missile, the UAV is only

susceptible to Stinger missile attacks when flying low.

97

6.4.2 MISSIONS & OBJECTIVES

The Predator’s “primary mission is interdiction and conducting armed

reconnaissance against critical, perishable targets” [40]. While reconnaissance and

surveillance constitute the largest part of its activities, the Predator can perform a

variety of roles [39]. These additional roles include target acquisition, target

designation, communications, battle-damage assessment, communications &

electronics intelligence, jamming, chemical and biological warfare detection, search

and rescue, and providing dispensable aircraft. Each of these roles achieves a

different objective and will be examined in more detail.

6.4.2.1 RECONNAISSANCE

Reconnaissance usually incorporates exploratory investigations to gather

information about a resource or enemy. It can gather a wide range of information

about an area, including information about weather, geography, enemy locations,

and troop movements. These missions typically cover a large area of interest at

cruise speeds, scouting for interesting information.

6.4.2.2 SURVEILLANCE

Surveillance constitutes a longer term version of reconnaissance and involves

observing a single target for a long time. Typically surveillance takes place after

reconnaissance when the points of particular interest have been discovered and

require watching for further information and analysis. Examples of surveillance

include watching a building, troop, or location. These missions cover a small area

and typically fly slow to avoid detection.

98

6.4.2.3 TARGET ACQUISITION & DESIGNATION & ATTACK

During military operations, destroying key enemy equipment and personnel is

critical. A Predator is an ideal way to search and find these targets without risking

a pilot’s life. The mission can involve high cruise speeds when locating targets, or

alternatively loitering in specific areas if intelligence indicates future enemy

movement. Once a target is found, the Predator can report target acquisition, use a

laser or other designator to guide another vehicle’s munitions against the target, or

use one of the Hellfire missiles the Predator carries to attempt to destroy the target.

6.4.2.4 BATTLE-DAMAGE ASSESSMENT

After attempted target destruction by either the UAV or another military unit, the

Predator can provide real-time assessment of the damage inflicted upon the target.

Such a mission requires the Predator to loiter over the targeted area, using its

sensors to analyze the target. This is most important when deciding whether a

follow up round is necessary after using long range weapons.

6.4.2.5 COMMUNICATIONS RELAY & JAMMING

In a rapidly advancing military operation, the Predator can use the 205 kg of

payload to carry communications relay equipment that enable friendly units to

communicate with each other in the absence of usable local or global

communication networks. In contrast to providing a communications relay for

friendly units, the Predator can be equipped with communication jamming

equipment to interfere with enemy communication. Both roles require a high

endurance and low speed vehicle, a role the Predator fits into easily.

99

6.4.2.6 BIOLOGICAL AND CHEMICAL WARFARE DETECTION

When suspected biological or chemical weapons have been used and it is dangerous

to send manned teams for investigation, the Predator can carry sensitive equipment

to determine if traces of biological or chemical weapons are evident. This eliminates

the risk that the lingering effects of these weapons might pose to manned

investigations. The mission parameters would be very similar to that of

reconnaissance, with the exception of using advanced equipment for the detection

of weapon remains.

6.4.2.7 SEARCH AND RESCUE & PERSON IDENTIFICATION

The infrared camera that the Predator uses is sensitive enough to detect and

distinguish a human heat source from 3,048 m [48]. This makes the Predator ideal

for search and rescue situations where conditions are nonconductive to ground

search and rescue. In these situations, the Predator would most likely perform

rapid sweeps between cruise and max speed to most quickly locate the person.

6.4.2.8 PROVIDING DISPENSABLE AIRCRAFT

Although a complete Predator system costs $40 million in 1997 dollars, much of

the cost, both monetary and in terms of human life, remains far away in the ground

station. Thus, Predators are ideally suited to high risk ventures where the plane

may be destroyed. For example, during operations in Iraq, Predators stripped of

sensors were flown into deliberately dangerous areas to test enemy anti-aircraft

capabilities. Other uses consist of provoking the enemy to scramble fighters in the

face of an unknown aerial threat. Such missions require fine control and UAV

dashes with maximum velocity. [37]

100

6.4.3 SCENARIO LOCATION

For an accurate simulation, a location is a necessary component. A location must

meet several requirements. First, airports or airfields must be present for the UAV

to launch. Secondly, the location must be large and diverse enough to provide a

realistic simulation. Because a Predator can fly approximately 805 km for

surveillance purposes, the location should have an area of comparable size. The

advantage to a diverse location is that it more accurately models situations a UAV

operates in the real-world. For example, diversity should include topology, terrain,

populations, population, and military bases or movements. Finally, the location

must be realistic within the scope of UAV usage, i.e. choosing a location in

Antarctica does not utilize the typical functionality of a UAV particularly well.

After careful consideration, the country of Afghanistan was chosen as the scenario

location. Afghanistan satisfies the requirements of UAV usage, diversity, airfields,

and location size. Furthermore, the US military has used the Predator extensively in

Afghanistan. While Predator missions have not been released to the general public,

it is beneficial to know that the UAV was simulated in locations that reflect real

operations. Afghanistan also offers much diversity in terms of both terrain and

population and has both urban and rural areas, including some in mountainous

regions that the UAV will be unable to fly over. Finally, because of the guerilla

warfare that often took place in the mountains and wilderness, the location is

ideally suited for the type of work the Predator does best: locate, observe, and take

action on enemy movements.

101

6.4.3.1 MAP & POINTS OF INTEREST

A Google Earth satellite map of Afghanistan can be seen in Figure 22. During

Operation Enduring Freedom in Afghanistan, one of the heavily used U.S. airbases

was located in Karshi-Khanabad, Uzbekistan [49]. Named K2, this airbase was only

a short flight away from Afghanistan and could reach Kabul easily. The map shown

in Figure 22 shows the launch point for the Predator UAV (Karshi) and the

approximate range of the Predator. The capital of Afghanistan, Kabul, is located

only 575 km away using the simplifying assumptions of a flat world and as-the-

crow-flies navigation.

Figure 22: Afghanistan map with Predator launch point and range © Google

102

6.4.4 SCENARIO

Now that the Predator UAV has been described in detail and a location has been

selected, it is possible to translate general knowledge about UAV missions into the

ADCUE model of resources, objectives, actions, events, etc. By first describing the

real-world capabilities as was done in previous sections, a solid knowledge base has

been laid such that the scenario can be framed realistically in terms of ADCUE.

6.4.4.1 OBJECTIVES

The objective for the Predator UAV is

to launch from the K2 airbase,

conduct reconnaissance of the capital

city Kabul or Herat by taking some

video, and return unharmed to the

airbase. The events being injected

into the system are gusty conditions

with a headwind and poor visibility

conditions at Herat.

6.4.5 SCENARIO DESCRIPTION

This section contains the base plan

for the UAV scenario and a listing

consisting of the simulation files for

the breakfast simulation. Each

component name is bolded and followed by a horizontal rule and the specification

of the individual component.

Figure 23: UAV base plan

103

6.4.5.1 BASE PLAN

The base plan seen in Figure 23 calls for the UAV to take off, fly to either Kabul or

Herat for reconnaissance, take some video, fly back home to K2, and land safely.

6.4.5.2 SCENARIO COMPONENTS

Action.Fly Home

Precondition: me.Alive == true
Precondition: me.Altitude > 0
Precondition: me.Velocity > 0

Postconditions:

me.Fuel -= 10
me.Location = "K2 Airbase"

Action.Fly to Herat

Precondition: me.Alive == true
Precondition: me.Altitude > 0
Precondition: me.Velocity > 0

Postconditions:

me.Fuel -= 10
me.Location = "Herat"

Action.Fly to Kabul

Precondition: me.Alive == true
Precondition: me.Altitude > 0
Precondition: me.Velocity > 0

Postconditions:

me.Fuel -= 10
me.Location = "Kabul"

Action.Land

Precondition: me.Altitude > 0
Precondition: me.Velocity > 0

Postconditions:

me.Fuel -= 10
me.Velocity = 0
me.Location = "K2 Airbase"
me.Altitude = 0

Action.Take Off

Precondition: me.Alive == true
Precondition: me.Altitude == 0
Precondition: Environment.Headwind <
20.43

Postconditions:

me.Fuel -= 10
me.Velocity = 37.75
me.Altitude = 4572

Action.Take Video of Herat

Precondition: me.Location == "Herat"
Precondition: Resource.Camera.Amount >=
1
Precondition: Resource.Camera.Working ==
true
Precondition: Environment.Herat Visibility >
5

Postconditions:

Resource.Camera.Taken = true

Action.Take Video of Kabul

Precondition: me.Location == "Kabul"
Precondition: Resource.Camera.Amount >=
1
Precondition: Resource.Camera.Working ==
true
Precondition: Environment.Kabul Visibility >
5

Postconditions:

Resource.Camera.Taken = true

Agent.Predator

Objective: Spy Kabul

Attribute: Boolean "Alive" true
Attribute: Text "Location" "K2 Airbase"

Attribute: Number "Length" 8.22 "m"
Attribute: Number "Height" 2.1 "m"

104

Attribute: Number "Empty Weight" 512 "kg"
Attribute: Number "Max Weight" 1020 "kg"
Attribute: Number "Wingspan" 14.8 "m"
Attribute: Number "Fuel" 378.54 "l"
Attribute: Number "Normal Altitude" 4572
"m"
Attribute: Number "Loiter Time" 24 "hr"
Attribute: Number "Stall Velocity" 27.78
"m/s"
Attribute: Number "Cruise Velocity" 37.75
"m/s"
Attribute: Number "Max Velocity" 60.35
"m/s"
Attribute: Number "Payload" 205 "kg"
Attribute: Number "Range" 730.64 "km"
Attribute: Number "Ceiling" 7620 "m"
Attribute: Number "Max Headwind" 15.43
"m/s"
Attribute: Number "Max Crosswind" 7.72
"m/s"
Attribute: Number "Min Runway Length"
1524 "m"
Attribute: Number "Min Runway Width"
22.86 "m"

Environment

Attribute: Number "Kabul Visibility" 5 "km"
Attribute: Number "Herat Visibility" 5 "km"
Attribute: Number "Headwind" 0 "m/s"
Attribute: Number "Crosswind" 0 "m/s"
Attribute: Boolean "Turbulence" false
Attribute: Boolean "Icy" false
Attribute: Boolean "Video Taken" false

Use: Agent.Predator

Update:

Event.Headwind

Postconditions:

Environment.Headwind = 18

Event.Poor Visibility

Postconditions:

Environment.Herat Visibility = 0.5

Event.Storm

Objective.Spy Herat

Condition: me.Location == "K2 Airbase"
Condition: Environment.Video Taken == true

Objective.Spy Kabul

Condition: me.Location == "K2 Airbase"
Condition: Environment.Video Taken == true

Resource.Hellfire Missles

Amount: 2 "missiles"

Update:

Resource.Video Camera

Amount: 1 "camera"

Attribute: Boolean "Working" true

Update:

Resource.Video of Herat

Amount: 0 "pics"

Attribute: Boolean "Taken" false
Attribute: Text "Location" "Herat" "city"

Resource.Video of Kabul

Amount: 0 "pics"

Attribute: Boolean "Taken" false
Attribute: Text "Location" "Kabul" "city"

6.4.6 TESTS

Two tests are to be performed. The first is to determine how the events Headwind

and Poor Visibility affect the plan.

105

6.4.6.1 TEST 1: HEADWIND

The first test consists of injecting the Headwind event into the simulation. Because

the Headwind event sets the attribute Environment.Headwind to a value greater

than the Predator can handle, it is expected that the event will affect the Take Off

event. The results of simulation using ADCUE seen in Figure 24 shows that it

indeed does. The consequences in this case is complete failure of the mission

because the UAV is unable to take off the runway.

Figure 24: UAV scenario with Headwind event

106

6.4.6.2 TEST 2: POOR VISIBILITY

The second test consists of injecting the event Poor Visibility event into the ADCUE

scenario. This event lowers the attribute Envrionment.Herat Visibility to a value

lower than the action Take Video of Herat requires for accurate pictures. Because

the visibility over Kabul has not changed, it is expected that the event will only

prevent the reconnaissance of Herat. As seen in Figure 25, ADCUE simulation

shows that this is the case; a mission to Herat fails, but a mission to Kabul is not

affected.

Figure 25: UAV scenario with Poor Visibility event in Herat

107

6.5 OVERALL RESULTS

Through the testing of the simple breakfast scenario, expected and unexpected

results were observed. First, the tests involving the breakfast scenario demonstrate

that ADCUE does automatically detect and determine the consequences of events

on a plan. One of the unexpected results was ADCUE’s extra validation of the plan

and the setup of the plan by catching a logic mistake. The testing of the slightly

more complex UAV scenario using static plans showed that ADCUE can easily be

applied to a new domain by changing the simulation files. Through the testing

summarized in Table 1, it can be said that the most basic functionality of ADCUE

works well and in some respects performs additional useful checks.

Table 5: Summary of testing and results

Simulation Event Description Actions Affected Results

Breakfast Sunny
Forecast

The daily forecast
calls for sun

None Pass

Breakfast Sour Milk The milk has gone
sour

Cook Pancakes, Pour
Milk and Cereal

Pass

Breakfast Free
McMuffin

A buy one, get one
free McMuffin deal

Free McMuffin, Pour
Milk and Cereal, Cook
Pancakes, Order
McMuffin, Eat Food

Pass.
Unexpected
results from
human error

UAV Headwind High headwind Take Off Pass

UAV Poor
Visibility

Visibility at Herat is
low

Take Video of Herat Pass

108

CHAPTER 7: CONCLUSION

This chapter summarizes the thesis as a whole, including the problem, existing

approaches, and the proposed system. Weaknesses or opportunities discovered are

covered in the future research section. The final section concludes with a forward

thinking perspective on results, lessons learned, and applicability to future

projects.

7.1 SUMMARY

Throughout this thesis, automatic determination of the implications associated

with unexpected events has been investigated and an approach entitled ADCUE

was proposed to enable autonomous reasoning about unexpected events. Because

this subject deals with a significant amount of planning, background concerning

this topic was reviewed to ensure readers were properly familiarized with the

material. Expanding upon the information covered in the background, the technical

literature was reviewed to see how other researchers have approached this

particular problem in the past. Most of the literature focused on dealing with

events, or plan interruptions, by associating the events with particular contingency

plans that provide workarounds for the consequences of the events. Several

reviewed approaches exhibited solutions that used more intelligent behavior by

considering the available actions within the world and dynamically changing the

plan based on the unexpected event.

Based on paradigms discussed in the background and in the literature review

sections, a new model entitled ADCUE was proposed in an attempt to address the

109

problem. The two key components of the model, slicing and the intersection

operator, were described and subsequently applied to the domain of planning and

detecting unexpected events. Mathematical definitions, pseudo code, and examples

were provided to ensure that the proposed approach was sound and could be fully

understood. The actual implementation of the ADCUE model, along with all

associated components, was detailed, including how each ADCUE component

contributed to the overall model. Both automated and manual plans were covered,

including the creation of a reusable library that other agent-based simulations can

utilize.

To ensure that ADCUE worked as advertised and expected, two scenarios in

different domains and of differing difficulty were created for testing purposes. Once

imported into ADCUE, events were injected into the scenarios to observe the

effectiveness of ADCUE’s detection and determination of the consequences of the

events on the plan. Each injected event was treated as a test and the predicted

results were compared to the actual results to evaluate the model.

7.2 FUTURE RESEARCH

With promising initial results, it is worth following up on this work and researching

topics that may lead to enhancements to ADCUE. Several significant subjects that

could yield a more robust and capable system include multi-agent systems,

probabilistic modeling, and learning.

110

7.2.1 MULTI-AGENT SYSTEM

A simulation of a single agent has limited application. Just as it takes many

soldiers to win a battle, oftentimes multiple agents need to work together to achieve

the goal. Extending ADCUE with the provision for coordinating the efforts and

capabilities of agents when developing a plan could be extremely beneficial. One

potential approach assumes a hierarchical authority structure. Not only does this

assumption simplify the analysis, but it also mimics reality as can be seen in most

military structures. While individual soldiers within a platoon may perform

completely independent actions, a platoon as a whole can be viewed from a higher

authority as a single entity. As long as the platoon’s individual actions contribute to

a collective action (such as attack target), individual soldier action can be neglected

from the point of a Major. The Lieutenant in charge of the platoon embodies the

abilities of the entire platoon from the perspective of the Major. Thus, the

Lieutenant acts as the communication layer between individual units of the platoon

(soldiers or squads). Extrapolating this concept out into a generic, non-military

sense, similar or dissimilar agents can be grouped together under the authority of a

boss agent. The boss agent represents the collective actions of the group. Similar to

a tiered organization chart or a military structure, multiple boss agents can be

grouped together under the authority of a higher boss agent.

7.2.1.1 POTENTIAL REASONING MECHANISM

Given a hierarchical authority structure of a boss agent with several individual

agents under her authority, the boss agent receives a set of objectives to achieve. To

develop a plan to achieve these objectives, the boss queries each agent under her

authority to see if it can achieve the objective on its own. If one agent is capable of

achieving the objective, a plan involving only that agent is developed and the boss

111

agent reports the objective can be achieved. However, if a single agent is incapable

of single-handedly achieving the objective, the agent reports to the boss a partial

plan consisting of all the actions the individual agent can contribute towards

completing the objectives. The boss can then query other agents, asking them to

contribute to the partially built plan. Thus, the plan is built incrementally, with

agents committing actions to the plan as they have the ability to do so. This model

assumes perfect willingness and cooperation between agents; treachery or laziness

of agents is not considered.

This discussion brings up several interesting issues. First, how should the boss

agent distribute the load? If a single agent is capable of achieving the objective,

should the boss agent consider ordering several additional agents to work in

parallel in order to accomplish the objective more quickly? Secondly, if multiple

agents are capable of achieving an objective, how does the boss agent determine

which agent(s) to assign to the plan? When unexpected events occur, who is

responsible for determining the consequences and who is responsible for

integrating the replanning across multiple tiers of command? These are all

questions that provide interesting and useful future research topics.

7.2.2 PROBABILISTIC MODELING

One of the assumptions thus far is that all actions within ADCUE are completely

deterministic, i.e. each action will always produce the same conditions in the same

situation. However, this is not a realistic assumption when dealing with the real

world. For instance, consider an Unmanned Aerial Vehicle (UAV) on a mission to

survey and destroy a target with one of its Hellfire missiles. In this scenario, the

action Launch Hellfire Missile should not always yield the postcondition

112

“Target.Destroyed equals true” because no missile type can hit the target 100% of

the time. In the real world, inherent uncertainties lead to non-deterministic actions.

In order to remedy this shortcoming in ADCUE, the concept of probabilistic actions

can be introduced. The difference between a normal action and a probabilistic

action is that a probabilistic action can initiate an event. By injecting an event into

the system, the action can effectively mimic the randomness found in a real world

system by modeling uncertain action outcomes. For instance, if a Hellfire missile

launched from a UAV has a history of 5% failure, the action Launch Hellfire Missile

can initiate the event Missed Target 5% of the times the action is executed. This has

several benefits. First, it provides a richer representation than a simple binary fail

or succeed criteria. Second, it allows multiple outcomes to result from the execution

of a single action. For instance, the Launch Hellfire Missile may also initiate a Killed

Civilians event to model the accidental and unfortunate side effects of warfare.

Through this introduction of probabilistic actions that can initiate events, ADCUE

could represent the natural uncertainty found within the real world more

accurately.

7.2.3 LEARNING

Learning is often an important method for augmenting the abilities of an agent over

time. While ADCUE does not explicitly define any learning strategies, it can

facilitate learning through the concept of an unknown event. An unknown event is

an event whose postconditions are not fully known (or perhaps not known at all).

Thus, the agent initially has no way of knowing how the event occurring will affect

the plan. The obvious goal of the agent is to determine or learn the effects of the

agent through experience. The agent first assumes a null hypothesis: the event will

113

have no effect on the plan. As the agent executes the plan, the agent closely

monitors the postconditions of actions to determine if any unexpected changes are

occurring. If so, they can be attributed to the unknown event. By validating or

invalidating the null hypothesis in this manner, a general trend of event effects may

be able to be extracted. Because events postconditions may vary depending

conditions (location of the event, severity of the event, etc), the agent may need to

experience the event multiple times before learning it well. One learning strategy

that the agent could employ is Case-Based Reasoning (CBR), where the case

contains the attributes of the current conditions, any known information about the

event, and the resulting postconditions that the agent notices. After gathering

several cases representing the occurrence of unknown events and the

postconditions that resulted from the event, the agent may be able to learn and

predict postconditions based off of the cases in the case library. Other approaches

may yield more advanced algorithms that more accurate or rapidly learn from what

is observed in the environment.

7.3 CONCLUSIONS

From the results observed during the testing of ADCUE, it can be concluded that

ADCUE performs accurately for simple scenarios and satisfies the proposed

hypothesis. Several different types of unexpected events were tested and ADCUE

handled them with ease, as was expected. It is interesting to note that the one

unexpected result did not arise from ADCUE’s inability to handle an unexpected

event, but human error.

Currently, several limitations exist in ADCUE. First, time is not well represented in

the simulation. Taking time into account would integrate more realism into ADCUE

114

by allowing agents and plans to have constraints not only on resources and

environmental conditions, but also temporally dynamic components, such as

events. Another limitation of ADCUE is the inability to fully operate dynamically

within a simulation. While the framework is laid down, further work is required to

integrate the pieces and allow agents to dynamically interact with the environment

in temporal manner. One of the most problematic disadvantages to the approach

presented in ADCUE is the data intensive nature of describing the components.

Because each component must be accurately described in detail for ADCUE to

correctly analyze the plan and all facets of the plan, the process of designing and

implementing a scenario can be labor intensive. However, with the introduction of

inheritance, component libraries, and automation techniques, this disadvantage

can be drastically reduced. Furthermore, many future areas of research may be

followed to expand the abilities of ADCUE and turn it into an honestly useful

paradigm.

This type of research is envisioned to eventually be useful in a diverse range of

domains. The ability to reason about unexpected events would be particularly

beneficial in the obvious application of planning and scheduling in dynamic

environments. For example, highly detailed and dependent projects, such as

construction could one day use such a system to determine the consequences of

late shipments. Other areas of application include military simulators or training

systems that allow events such as unexpected military movements or ambushes to

be injected. Modeling “what-if” scenarios of static plans is another application of

this research. The successful first tests of the ADCUE model indicate that the

model is promising enough to continue the research to improve and expand the

approach.

115

LIST OF REFERENCES

[1] W. V. Wezel, R. J. Jorna, and A. M. Meystel, Planning in Intelligent
Systems: Aspects, Motivations, and Methods. Hoboken, NJ: John Wiley &
Sons, Inc., 2006.

[2] S. C. Perry, "The Relationship between Written Business Plans and the
Failure of Small Businesses in the U. S," Journal of Small Business
Management, vol. 39, pp. 201-208, 2001.

[3] L. D. Interrante and D. M. Rochowiak, "Active Rescheduling for
Automated Guided Vehicle Systems," Intelligent Systems Engineering, vol.
3, pp. 87-100, 1994.

[4] M. Campbell, A. J. Hoane Jr, and F. H. Hsu, "Deep Blue," Artificial
Intelligence, vol. 134, pp. 57-83, 2002.

[5] R. Volpe, T. Estlin, S. Laubach, C. Olson, and J. Balaram, "Enhanced
Mars Rover Navigation Techniques," presented at Robotics and
Automation, 2000.

[6] M. Baldoni, L. Giordano, A. Martelli, and V. Patti, "Reasoning about
Complex Actions with Incomplete Knowledge: A Modal Approach,"
presented at ICTCS, Torino, Italy, 2001.

[7] A. J. Gonzalez and R. Ahlers, "Context-Based Representation of
Intelligent Behavior in Training Simulations," Transactions of the Society
for Computer Simulation International, vol. 15, pp. 153-166, 1998.

[8] P. Brézillon, "Context Dynamic and Explanation in Contextual Graphs,"
Modeling and Using Context (CONTEXT-03), pp. 94-106, 2003.

[9] A. Blum and M. L. Furst, "Fast Planning Through Planning Graph
Analysis," Artificial Intelligence, vol. 90, pp. 281-300, 1997.

[10] D. N. Davis, "Reactive and Motivational Agents: Towards a Collective
Minder," presented at Intelligent Agents III—Third International
Workshop on Agent Theories, Architectures, and Languages, London,
UK, 1996.

[11] P. J. Gmytrasiewicz and C. L. Lisetti, "Emotions and Personality in Agent
Design," presented at First International Joint Conference on
Autonomous Agents and Multiagent Systems: Part 1, Bologna, Italy,
2002.

[12] F. Andriamasinoro and R. Courdier, "The Basic Instinct of Autonomous
Cognitive Agents," presented at International Conference on Autonomous

116

Intelligent System (ICAIS’2002), February 12th-15th, Geelong, Australia,
2002.

[13] D. E. Wilkins, Practical Planning: Extending the Classical AI Planning
Paradigm. San Mateo, CA: Morgan Kaufmann Publishers, 1988.

[14] A. Nareyek, Constraint Based Agents: An Architecture for Constraint
Based Modeling and Local Search Based Reasoning for Planning and
Scheduling in Open and Dynamic Worlds. Berlin, Germany: Springer,
2001.

[15] M. Wooldridge and N. R. Jennings, "Intelligent Agents: Theory and
Practice," Knowledge Engineering Review, vol. 10, pp. 115-152, 1995.

[16] J. Blythe, "An overview of planning under uncertainty," AI Magazine, vol.
20, pp. 37-54, 1999.

[17] A. M. A. Salva, "Situational Awareness Through Context Based
Situational Interpretation Metrics," Master's Thesis, University of Central
Florida, Fall 2003.

[18] J. McCarthy and P. Hayes, Some Philosophical Problems from the
Standpoint of Artificial Intelligence: Stanford University, 1968.

[19] J. F. Allen, H. A. Kautz, R. N. Pelavin, and J. D. Tenenberg, Reasoning
about Plans. San Mateo CA: Morgan Kaufmann Publishers Inc., 1991.

[20] R. Fikes and N. J. Nilsson, "STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving," Artificial Intelligence, vol. 2, pp.
189-208, 1971.

[21] R. van der Krogt, A. Bos, and C. Witteveen, "Replanning in a Resource-
Based Framework," Multi-Agent Systems and Applications II, vol. 2322,
pp. 148–158, 2002.

[22] T. B. Dinh and B. Smith, "CPPlanner: Extending Graphplan Framework
for Optimal Temporal Planning," presented at European Conference on
Artificial Intelligence, Valencia, Spain, 2004.

[23] A. Blum and J. Langford, "Probabilistic Planning in the Graphplan
Framework," Proceedings of the Fifth European Conference on Planning,
pp. 319–332, 1999.

[24] L. D. Interrante, "A Model For Selective Attention In Monitoring And
Control Reasoning Tasks," presented at Systems, Man, and Cybernetics
Conference, Charlottesville, VA, 1991.

[25] J. Blythe, "Planning with External Events," presented at Conference on
Uncertainty in Artificial Intelligence, Seattle, WA, 1994.

117

[26] C. Grama, E. Pollak, R. Brasch, J. Wartski, and A. J. Gonzalez,
"Automated Generation of Plans through the Use of Context-Based
Reasoning," presented at Eleventh International Florida Artificial
Intelligence Research Society Conference, 1998.

[27] A. J. Gonzalez and S. Saeki, "Using Contexts Competition to Model
Tactical Human Behavior in a Simulation," presented at Context 01
Conference, 2001.

[28] C. Micacchi, "An Architecture For Multi-Agent Systems Operating In Soft
Real-Time Environments With Unexpected Events," University of
Waterloo, 2004.

[29] A. Nareyek and T. Sandholm, "Planning in Dynamic Worlds: More than
External Events," IJCAI-03 Workshop on Agents and Automated
Reasoning, pp. 30–35, 2003.

[30] E. Onaindia, O. Sapena, L. Sebastia, and E. Marzal, "Simplanner: An
Execution Monitoring System for Replanning in Dynamic Worlds," in
Progress in Artificial Intelligence Knowledge Extraction, Multi-agent
Systems, Logic Programming, and Constraint Solving: Springer Berlin,
2001, pp. 393–400.

[31] J. Anderson and M. Evans, "A Generic Simulation System for Intelligent
Agent Designs," Applied Artificial Intelligence, vol. 9, pp. 525-560, 1995.

[32] M. E. Pollack and J. F. Horty, "There's More to Life Than Making Plans,"
AAAI Magazine, vol. 20, pp. 71, 1999.

[33] I. Merriam-Webster, "Merriam-Webster Online Search," 2007.

[34] F. Tip, "A Survey of Program Slicing Techniques," Journal of Programming
Languages, vol. 3, pp. 121-189, 1995.

[35] J. Garamone, " Predator Demonstrates Worth Over Kosovo," in American
Forces Press Service, 1999.

[36] D. Martin, "The Predator," in CBS News, 2003.

[37] "Pilotless Warriors Soar To Success," in CBS News, 2003.

[38] C. Wade, "The Warfighter's Encyclopedia: RQ-1 Predator," N. A. C.-W.
Division, Ed., 2001.

[39] E. J. Labs, "Options for Enhancing the Department of Defense's
Unmanned Aerial Vehicle Programs," C. B. Office, Ed., 1998.

[40] A. C. Command, "MQ-1 Predator Unmanned Aerial Vehicle," U. S. A.
Force, Ed., 2007.

118

[41] G. S. Lamb and T. G. Stone, "Concept of Operations for Endurance
Unmanned Aerial Vehicles", 1996,
http://www.fas.org/irp/doddir/usaf/conops_uav/index.html

[42] R. McVicker, "Predator System Familiarization Guide", 1996,
http://www.fas.org/irp/agency/daro/predator/toc.html

[43] J. Pike, "RQ-1 Predator MAE UAV", 2002,
http://www.fas.org/irp/program/collect/predator.htm

[44] K. T. Rhem, "Iraqi Plane Shoots Down American Predator Unmanned
Aircraft," in American Forces Press Service, 2002.

[45] J. s. I. Group, "AGM-114 Hellfire", 2000,
http://www.janes.com/defence/air_forces/news/jalw/jalw001013_1_n.s
html

[46] "Patriot TMD", 2000, Federation of American Scientists,
http://www.fas.org/spp/starwars/program/patriot.htm

[47] J. s. I. Group, "Raytheon Electronic Systems FIM-92 Stinger ", 2000,
http://www.janes.com/defence/air_forces/news/jlad/jlad001013_2_n.s
html

[48] A. Robinson, "FAA Authorizes Predators to Seek Survivors", 2006,
http://www.af.mil/news/story.asp?storyID=123024467

[49] "US Asked to Leave Uzbek Air Base", 2005, BBC News,
http://news.bbc.co.uk/2/hi/asia-pacific/4731411.stm

