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ABSTRACT 

Planning is essential for an action-oriented, goal-driven software agent. In order to 

achieve a specific goal, an agent must first generate a plan. However, as the poet 

Robert Burns once noted, the best laid plans can often go awry. Each step of the 

plan is subject to the possibility of failure, a truth particularly relevant in the real-

world or a realistic simulated environment. External influences not originally 

considered can often cause sudden, unanticipated consequences during the 

execution of the plan. When this happens, an intelligent software agent needs to 

answer the following important questions: What are the consequences of this event 

on its plan? How will the plan be affected? Can the plan be adjusted to 

accommodate the unanticipated effects? The research described in this thesis 

develops a model whereby intelligent agents can automatically determine 

consequences of unplanned events. Such a model provides agents with the ability 

to detect if and how events will affect the plan. This allows agents to subsequently 

modify the plan to mitigate unfavorable consequences or take advantage of 

favorable consequences. 
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CHAPTER 1: INTRODUCTION 

Planning, the act of choosing a series of actions to bring about desired changes, is 

an indispensable process when attempting to achieve goals. In the real world, 

planning varies in complexity from simple to-do lists to massive organizational 

strategic plans. In fact, nearly every aspect of life involves some form of planning, 

even the mundane trip to the grocery store. As noted in [1], a person plans “to 

increase his company’s volume of business, or to win an election, or to write a 

letter, or to build a bridge...he plans all the time. By his very nature every man 

plans constantly.”  Not only do individuals benefit from planning, but studies [2] 

show that organizations such as businesses with written, formal plans have a 

higher chance of succeeding than those that operate on-the-fly. Thus, planning is a 

foundation upon which intelligent human and even organizational behavior is 

derived.  

In a computer simulation, agents might range from operating purely in an 

instinctive, reactive manner to sifting through millions of possibilities to determine 

the best possible sequence of moves. Interactive computer-aided planning is 

especially useful in domains where “what-if” scenarios assist with the design of 

procedures and schedules. Automated agent-based planning includes applications 

in scheduling where planners manage machinery in a manufacturing environment 

[3], chess playing where extensive sets of possible future states are considered 

before committing to a move [4], and motion planning where robots calculate the 

best path to take in order to reach a destination [5]. 

One caveat is true for both humans and computers: any plan assumes certain 

predictions about the future. A mental to-do list that just includes buying some 
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groceries presupposes no car accident will occur on the way to the store. A plan of 

attack from a chess playing agent assumes the opponent will not abandon her 

current well-fortified position and strategy. As a plan unfolds, the pliant future may 

unveil events not previously expected. These interruptions may prevent the plan 

from executing smoothly. For instance, you notice a piece of plywood in the road 

ahead while driving to the grocery store, leading you to perform evasive action to 

prevent a possible flat tire. Or in a game of chess, the opponent melds her approach 

with a completely different approach, achieving a surprise capture. When 

unanticipated events such as these occur, a human or computer agent must be 

able to recognize what effects, if any, the event might have on the plan. In short, the 

agent should be able to answer the question “What are the consequences or 

implications of a given event on the plan?”  

The ability to see the implications of an unanticipated event is a skill humans use 

almost unconsciously throughout any given day. If by chance you meet an old 

friend in the grocery store and engage in a lengthy conversation, you might begin to 

mentally tabulate how this interruption will affect the rest to your day. Perhaps that 

errand next on your to-do list can be done after lunch. Your lunch plans 

themselves might change to include your rarely-seen friend. These plan 

modifications come naturally in the case of a morning delay; however, in the case of 

a missed delivery on a complex construction project or an unexpected tactical 

maneuver in a battle, the implications and subsequent plan changes may not be as 

easy to determine. In addition to being more difficult to calculate, the consequences 

of these types of plans may be much more serious, as unexpected tactical 

maneuvers can lead to casualties. Regardless of the difficulty, humans possess 

techniques and heuristics that deal with determining the implications arising when 
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unexpected events occur, while intelligent computer agents struggle with seemingly 

simple cause and effect scenarios in a dynamic world [6].  

This research develops a model that endows computer agents the reasoning 

faculties to understand consequences of unexpected events. Through inspection of 

events occurring or known to occur in the future, agents can determine whether 

these events have any effect on the plan, and if so, what those effects might be. This 

model proposes to draw heavily from several preexisting paradigms: primarily 

Context-Based Reasoning (CxBR) [7], Contextual Graphs (CxG) [8], and GraphPlan 

[9]. While GraphPlan excels at creating plans in a static environment, CxBR and 

CxG provide an approach for executing a plan based on the continually changing 

state of the agent and the environment. Thus, an agent operating within these 

paradigms moves between contexts (in CxBR) or nodes on a graph (CxG), allowing 

the agent to intelligently adjust its behavior to a particular situation. GraphPlan 

provides information about the relationships between situations, aiding reasoning 

about events. Through adaptation and extension, a model that combines the 

flexible, dynamic execution flow from CxBR, the straightforward representation of 

CxG, and the explicit causality linkages within GraphPlan can achieve the goals of 

this work.  

This thesis continues in Chapter 2 by reviewing background material relevant to 

understanding consequences. Both a historical perspective of planning and a state-

of-the-art literature review of current approaches to reasoning about consequences 

are presented. Chapter 3 succinctly describes the problem faced, the hypothesis on 

which this work is based, and the potential contributions resulting from the 

investigation. Chapter 4 develops the formal model that provides the foundation for 

the prototype implemented in Chapter 5. Chapter 6 describes the tests performed 



4 
 

using the prototype to verify the correctness and usefulness of the model. 

Concluding in Chapter 7 with a discussion of the testing results, this thesis 

summarizes the project and offers insights into future work that may further 

improve the subject field. 
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CHAPTER 2: BACKGROUND 

To better appreciate the problem domain of automatically determining 

consequences of unplanned events in a real-world environment, a two-part 

background is necessary. The first part of the background introduces the topic with 

a historical perspective. Because agent behavior and reasoning is of particular 

interest to this investigation, agents, planning/replanning, and multi-agent systems 

are overviewed. The second part delves deeper into areas of planning by examining 

the current literature related to reasoning about consequences. Two approaches 

represented include contingency plans and dynamic analysis of event effects. 

2.1 HISTORICAL PERSPECTIVE 

Simulating agent behaviors in general can be approached from several different 

levels. At the lowest cognitive level, agents act solely on instincts (reflexive agents) 

[10]. Agents behaving on instincts operate completely in the “now,” without thought 

to the past or future. They observe the environment and react with solutions 

designed to satisfy a perceived want or need without regard for the future 

consequences of such actions. On a higher level, reactive agents [10] may be 

programmed to “feel” emotions or motivations that provide contextual information 

to limit the available actions, weighting an agent’s action selection mechanism 

toward certain tendencies. For example, feeling fear places constraints on the 

actions the agent can perform. Even if an attractive option becomes openly 

available, the feeling of fear may cancel any distracting thought of taking advantage 

of the attractive option by keeping the agent concentrated on “flee or fight 

behaviors” [11]. At the highest level, agents utilize cognitive abilities, considering 
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the past, present, and future to determine what behaviors to adapt (reflective 

agents) [10]. This is the level at which agents possess the cognitive abilities to 

project the consequences of actions into the future and formulate plans. Behavior 

based on the first two levels (reflexive and reactive) do have a place in software 

agent behavior [12] and can be used as the basis for other Artificial Intelligence (AI) 

algorithms. However, it is not suitable for general purpose planning [13]. For 

effective planning, agents must operate primarily at the highest level of cognitive 

reasoning.  

2.1.1 WHAT IS PLANNING? 

Wezel, Journa, and Meystel [1] define a plan as a goal state and the methods of 

achieving that goal state. This corresponds to the “what & where” and the “how & 

when” of the plan [14]. They go on to postulate that the act of planning requires 

three components: 

1. An entity to develop a plan 

2. An entity to execute the plan 

3. The plan itself as represented as the communication between the two 

entities 

It is not necessary for the two entities to be separate; the creator and executer of 

the plan can be the same entity. However, when implemented in a software agent, 

the module that develops the plan is often separate from the module that executes 

the plan. Thus, the separation of the creation and execution of the plan is an 

important distinction.  
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2.1.1.1 MODEL OF THE FUTURE 

The process of planning can be thought of selecting a sequence of particular actions 

out of a large number of possible actions in order to achieve some specified goal [1]. 

Competent selection and successful execution of actions should, in an ideal world, 

eventually yield the goal state. One of the major problems with planning is the fact 

that any projection of actions into the future requires a model of the future [1]. 

Because the future does not yet exist and is subject to uncertainty, the success of a 

plan depends on the quality of the model of the future. How a plan is affected by 

the model of the future is easily seen in two extremes of human outlook: 

• A pessimist, generally described as a gloomy person, always expects the 

worst possible occurrence 

• An optimist views the world through rose-colored glasses, often ignoring the 

harsh reality 

Typically, neither of these two extremes represents an accurate model of the future. 

Consider a plan that includes two alternative activities: an outing to the beach or a 

shopping trip to the mall. When developing the plan, the model of the future is very 

important. If you ask the pessimist, she would say it is probably going to rain and 

thus recommend the shopping trip. If you ask the optimist, she would be much 

more inclined to disregard the possibility of it raining and recommend the beach 

trip. If you were in charge of the day’s plan, which model would you use? Perhaps a 

better model of the future might be the weather forecast for the day. It is interesting 

to note that the most useful model of the future may differ depending on the type of 

planning. Military planning may benefit from a more pessimistic model in an 

attempt to always anticipate and forestall the worst possible scenario. Regardless of 
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the application domain, planning is highly influenced by the agent’s perception of 

the future.  

2.1.1.2 HIERARCHICAL PLANNING 

Planning, by its very nature, is a hierarchical process [1]. Initially, the plan is 

conceived using a very coarse granularity. If planning to do some errands around 

town, the initial plan may only consist of a list places to visit. For example, one goal 

of the plan might be to buy food for supper. Thus, the place “grocery store” may be 

part of the initial plan, yet simply visiting the grocery store will not accomplish the 

goal. As the plan is developed, it must be further expanded to a finer granularity. 

Each place to visit may be expanded to include a sub-list of tasks to perform. In the 

case of the grocery store example, the tasks may include selecting a recipe and 

creating list of ingredients to buy. In general, a single action may represent a group 

of sub-actions; this grouping is referred to as aggregation of actions. As the plan is 

developed, each aggregation of actions is dis-aggregated, giving the plan a finer 

granularity of details. This enhances the efficiency of the planning process. Instead 

of initially attempting to manage myriads of unrelated pieces of information, details 

are expounded only after the structure of the plan has been developed. In fact, 

some small details of the plan may be disaggregated only moments before 

execution, such the exact aisle and path to take in the grocery store. 

2.1.2 WHAT IS AN AGENT? 

The definition of an agent is of particular interest when dealing with agent-based 

systems. What entities can be classified as agents? By what criteria is intelligence 

judged? One definition postulates that it is the possession of several characteristics 
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such as autonomy, social ability, reactivity, and pro-activeness that differentiates 

an agent from a software entity [15]. This definition may be expanded to a more 

general one: an entity can be considered an intelligent agent only if it exhibits the 

mental or emotional characteristic normally attributed to humans [15]. For the 

purposes of this discussion, an agent will be defined as an intelligent software 

entity with a purpose (i.e. it has some goal to achieve) and the ability to change the 

state of the environment through the intelligent execution of actions.  

2.1.3 WHAT IS REPLANNING? 

Because planning deals with future expectations in an uncertain future, the actual 

unfolding of the future may deviate from the agent’s expectations, or model of the 

future. These deviations from the agent’s model of the future result from the non-

deterministic nature of a real-world environment or from the interference of another 

agent’s actions. In short, the real world deals with probabilities – nothing is certain. 

Entire branches of mathematics such as Bayesian statistics deal with the likelihood 

that a particular situation will occur [16].  

Oftentimes, these unexpected events will interrupt the plan in some fashion. The 

severity of the interruption may vary from a slight inconvenience to a complete plan 

failure if the action sequence is continued without modification. This is not to say 

that all unexpected events bring unfavorable interruptions; in fact, unexpected 

events may aid the agent in achieving the goal. Nonetheless, agents are typically 

more concerned with obstacles to the plan. Because of these uncertainties, any 

planning agent operating in the real world or a simulated environment that 

accurately mimics the real world must account for error between what the agent 

expects to happen and what actually does happen. Once this error has been 
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detected, the agent must re-analyze the plan and make corrections, including the 

possibility of generating a completely new plan. This adjustment of the plan, or 

“course correction,” is referred to as replanning.  

2.1.4 MULTI-AGENT SYSTEMS 

Currently, research into agent based systems is focused primarily on multi-agent 

systems. While single agents can accomplish complex objectives, more 

comprehensive objectives often require the teamwork of several agents. 

Additionally, the interactions and cooperation among multiple agents are 

fascinating not only to computer scientists, but also those in the fields of 

psychology and sociology. Teams consisting of humans and software agents pique 

the interest of Human-Computer Interaction (HCI) experts in addition to 

organizations such as Department of Defense (DoD) as they investigate integrating 

semi-autonomous forces (SAFs) into the military [17]. Furthermore, multi-agent 

systems facilitate the development of simulations where more than a single entity 

must be represented, such as is the case when training soldiers with teams of 

intelligent agents acting as the opposing force.  

In spite of multi-agent system’s popularity, single agent systems are still useful and 

are particularly beneficial when developing and testing a new reasoning model. 

During the construction of any new software, test cases must be built up gradually 

and incrementally to verify each part of the software. Thus, the scope of this thesis 

is limited to developing a reasoning model for a single agent. The goal of the model 

presented in this thesis is to develop an initial version of the model and verify that 

the model is sound, both of which can be done satisfactorily with a single agent 

system. Because of the usefulness of multi-agent systems, one cannot simply 
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ignore them. Thus, the eventual goal of the model is to support multi-agent 

systems. In order to develop a model that can be easily extended into the domain of 

multi-agent systems, the investigation reported in this thesis keeps the 

requirements and opportunities available in multi-agent systems in the background 

of all choices and considerations. As a result, when developing the model, 

preference was given to cases where initial model features or structures could easily 

be extended to facilitate future multi-agent expansions.   

2.1.5 CLASSICAL PLANNING APPROACHES 

In 1969, McCarthy and Hayes [18] introduced situation calculus, a conceptual view 

of planning that serves as the foundation for may subsequent planning approaches. 

Situational calculus represents the planning environment through situations, 

goals, and the effects of actions. It provides a clear methodology for planning 

entities to project a plan into the future by manipulating the world state through 

the execution of actions. This concept is used widely in state-based planning 

systems where a planner executes actions that cause a series of world state 

changes as a means of achieving a specific goal [19].  

2.1.5.1 STRIPS 

In 1971, Fikes and Nilsson [20] borrowed concepts from situation calculus and 

proposed a new approach to planning and problem solving by introducing STRIPS, 

the STanford Research Institute Problem Solver. Through a world representation 

that has since become commonly referred as a “STRIPS domain,” the problem solver 

describes the environment through a “composition of operators that transforms a 

given initial world model into one that satisfies some stated goal condition” [20]. 
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The world model is represented through facts and conditions, or well-formed 

formulas (wffs) and first-order predicated calculus, respectively. Agents or the 

global problem solver can use operators, which correspond to specific actions that 

have certain, pre-defined effects on the world model. These effects fall into two 

categories: effects that add or remove wffs. Changing a condition in the 

environment would thus be represented via two effects: one that removes a pre-

existing wff and a subsequent one that adds the same wff with a new value. 

Because operators can execute only under the presence of predefined wffs, 

operators are said to be executable only when certain preconditions in the world 

model exist. Given an objective, or final world conditions that must be achieved, an 

agent searches through the problem space for sequences of operations that lead 

towards the goal.  

2.1.5.2 GRAPHPLAN 

Building on the work of Fikes and Nilsson, Blum and Furst [9] extended STRIPS 

with an improved planner called GraphPlan. Due to the increases in computer 

memory and computational power, GraphPlan utilizes a Planning Graph, which 

concisely organizes operators and their preconditions and effects in a graph. Each 

node in the graph holds an action (operator) and each edge defines the 

preconditions and effects associated with the connected actions. As in STRIPS, 

effects are defined as add-effects and delete-effects. The graph is built in layers, 

beginning with the initial state of the world where the agent exists in the current 

time slice. As compatible operators are selected and added to the graph, layers are 

built, with each layer representing all the possible actions for a particular step in 

the plan. Once the graph is built, the planner begins with the end goal and works 

backwards in the graph to trace what actions must be executed to bring about the 



13 
 

goal state. During this procedure, mutually exclusive actions are eliminated to 

ensure plan validity. The path of actions necessary to bring about the goal state is 

selected as the plan to execute.  

The advantages to this approach are several-fold. First, graphs can be built quickly 

in polynomial time. Second, the graph organizes the problem space in a logical 

fashion, linking actions, their prerequisite conditions, and the effects. However, 

most importantly, by representing the problem space in a graph, pre-existing graph 

algorithms can be used to efficiently analyze and rank various plans. In terms of 

the determining consequences, by explicitly defining causality between an agent’s 

action and the effects that occur in the world, reasoning about unexpected events 

becomes quite intuitive. However, GraphPlan has no built-in method to handle 

such reasoning. Typical implementations of GraphPlan simply respond to events by 

taking a snapshot of the current world and using that as the initial conditions 

when executing the planner again. Furthermore, GraphPlan lacks the ability to 

reason about the time and resources required to carry out actions.  

2.1.5.3 GRAPHPLAN VARIANTS 

Since the introduction of GraphPlan, numerous variants have been developed to 

address limitations within GraphPlan. Krogt [21] addresses the lack of intelligent 

replanning by proposing the Action and Resource Planning Formalism that 

attempts to incrementally modify the plan so as to reduce replanning time and 

prevent radical shifts in an agent’s behavior. To facilitate planning situations where 

achieving the objective quickly is desirable, Dinh [22] replaces the instantaneous 

execution of actions in GraphPlan with action durations and incorporates 

optimizing features into his system, called CPPlanner, to find plans that require the 

least amount of execution time. Because the original GraphPlan did not deal with 
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real-world uncertainties, Blum [23] extends actions to include multiple probabilistic 

effects and improves the plan evaluation to search for plans that have the highest 

likelihood of succeeding. In effect, approaches such as these represent a shift away 

from classical planning where knowledge is perfectly known, outcomes are purely 

deterministic, and no unexpected events occur. 

2.2 STATE-OF-THE-ART REVIEW 

As classical planning and replanning paradigms proved insufficient to solve real-

world problems, newer approaches began to assimilate more realistic models of the 

real world. One aspect of particular interest that models have incorporated into the 

planning phase is intelligently responding to unexpected events that occur during 

the execution of the plan. The next sections delve deeper into the general problem 

of planning and replanning to review how current state-of-the art literature has 

approached this specific problem of reasoning about unexpected events and 

determining their consequences. Currently, two general approaches to handling 

unexpected events exist: activating pre-programmed contingency plans or 

dynamically selecting new actions based on analysis of event effects. Each will be 

examined in subsequent sections. 

2.2.1 CONTINGENCY PLANNING 

One approach to dealing with unexpected events is to specify pre-determined 

contingency plans that handle events. If actions or situations commonly fail for well 

known reasons stemming from an event occurring, an agent can be programmed to 

recognize these events and avoid them by executing an alternative, or contingency, 

plan. A situation where such a contingency plan might be helpful in the real world 
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is in a checkout line at a store. If the credit card won’t work or an item won’t scan 

properly for the person in front of you, you would recognize that this event will have 

certain effects on the plan; namely, your checkout procedure will have an 

unspecified delay. When designing a planning system, a programmer can hardcode 

modules that detect events such as these, calculate the consequences, and respond 

with pre-defined contingency plan. For instance, the planning system may include 

the contingency plan to leave the delayed checkout line and join another one.  

While adding predefined contingency plans may be advantageous to the agent, the 

primary problem with this approach is that it masks the underlying problem. The 

true problem is that agents cannot automatically determine the consequences of 

unexpected events. By manually adding contingency plans, a human is performing 

all the cognitive work of programming the planning system to recognize and 

respond to events. In this sense, unexpected events as seen in these systems are no 

longer really all that unexpected because the planning system realizes they will 

inevitably occur. The problem is further exacerbated by the fact when a truly 

unexpected event occurs, the system has no methodology do deal with it. As a 

result, if no contingency plan has been hard-coded into the system for a particular 

event, the planner cannot reason about any of the potential consequences of that 

event.  

While it is true that implementing pre-determined contingency plans may not be 

the best or latest solution to the problem of automatically determining 

consequences, it lays the foundation for more effective solutions and must therefore 

be carefully investigated.  
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2.2.1.1 CONTEXTUAL GRAPHS (CXG) 

While not designed to serve as a planning paradigm, the approach of recognizing 

consequences of events and responding to them in a pre-determined manner can be 

implemented through the use of the AI paradigm Contextual Graphs (CxG). 

Originally designed to specify human reactions to incidents that can take place in 

particular situations, CxG represents this knowledge using contextual cues. 

Brezillon [8] defines a contextual graph as “an acyclic directed graph with a unique 

input, a unique output, and a serial-parallel organization of nodes connected by 

oriented arcs”. The CxG reasoning process begins with a unique input node, traces 

a single path through the contextual graph, and ends when a unique output node 

is reached. Each type of node in the graph represents an action, a sub-graph, a 

decision point, or a recombination of a previous decision. By combining these 

contextual elements, a plan or process resembling a flowchart is built by a 

contextual graph designer to handle a particular situation. 

One of the strengths of CxG is its adaptability to incremental knowledge 

acquisition. The designer of the contextual graph can easily extend the graph to 

include contingency plans. Once the graph is redeployed, the graph can handle pre-

determined events. As a result, contextual graphs are well-suited for facilitating the 

construction of a plan and then reasoning about what to do when a plan 

interruption occurs – as long as a contingency plan exists to handle any situation 

the agent may encounter. However, CxG suffers from several drawbacks. While 

CxG’s can reason about the effects of events occurring in the immediate future, it 

has no capability to project the effects of events into the far future and avoid 

potential trouble spots. Another major disadvantage of CxG is its inflexible nature 

and its inability to respond to any events not preprogrammed. This greatly reduces 

the usability of Contextual Graphs in an automated system. Finally, because 
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contingency plans are encoded into decision nodes, they can only be activated at 

particular points in the plan.   

2.2.1.2 SITUATIONAL OBJECTS 

Working towards the goal of developing an approach that allows contingency plans 

to be activated when the need arises, Interrante [24] introduces the concept of 

situational objects in her model of selective attention to sensors.  In this model, 

Interrante aims to limit sensory overload by analyzing only those sensors relevant 

to the current situation. To accomplish this, she develops a set of situational 

objects that control the agent in particular situations. Deriving information from 

relevant sensors, an agent can develop a set of expectations about the future state 

of the world on a global timeline. Using current sensor information and the 

expectations of the future, transitions between situational objects occur to keep the 

agent’s behavior optimal for each type of situation it encounters. If at any time the 

agent predicts that a critical failure will occur soon, an object from a separate bank 

of situational objects reserved for emergencies can be activated. These situational 

objects represent contingency plans and respond to pre-determined events sensed 

through expectations on the global timeline. The timeline functions as the method 

for determining consequences and identifying events. For instance, an airplane 

might initiate the contingency plan for an emergency landing when the expectation 

timeline indicates a critical fuel shortage as detected through sensor information. 

As with other approaches to contingency planning, if an unrecognizable situation 

develops, no functionality exists to reason about the situation. 
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2.2.1.3 BAYESIAN BELIEF NETWORK 

To dynamically consider uncertainty in a real-world environment, Blythe [25] 

proposes a system that models action and event uncertainty through a Bayesian 

Belief Network. In this model, events have enabling conditions that allow them to 

occur with a certain probability. For instance, in the grocery store example used 

earlier, the event bad credit card has enabling conditions of agent being in the store 

checkout line and occurs with a frequency of 0.01. Furthermore, actions are 

modified so they become non-deterministic, meaning that the execution of an action 

may result in completely different effects depending on probabilistic functions. For 

example, the action walk typically results in physical agent movement; however, an 

infrequent, but possible alternate outcome may result in bruising if the agent slips 

on a banana peel. All the possible alternative outcomes are added to the belief 

network to create plans that include uncertainty. As alternatives are tabulated and 

the probabilities are assigned to paths through the belief network, plans that have 

a high likelihood of success can be chosen. Because causality about uncertain 

actions and events are explicitly considered, consequences are considered 

throughout the planning process. It is of interest that contingency plans are 

considered as the agent plans and may be utilized even if a plan interruption has 

not yet occurred. This is a byproduct of the attempted maximization of successful 

plans; if an action results in high probability of failure, that action may be avoided 

altogether and an alternative contingency plan might be selected.  Ideally, this 

approach leads to more robust plans by considering unexpected events a-priori and 

selecting actions and paths that lead to plans that maximize the likelihood of 

success. However, as before, all unexpected events and their associated 

probabilities must be pre-programmed into the planning system. 
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2.2.1.4 SITUATIONAL INTERPRETATION METRICS 

In the field of real-time tactical human behavior representation, Gonzalez and 

Ahlers [7] proposed a paradigm called Context-Based Reasoning (CxBR). 

Resembling an augmented finite state machine, CxBR adds the concept of contexts 

where each context can be likened to a state that addresses the needs, actions, and 

actions necessary to act intelligently in a particular situation. Organized 

hierarchically, context types include Mission Contexts, Major Contexts, and Sub-

Contexts (with Sub-Sub-Contexts, ad infinitum) to successively control finer 

grained behaviors. Thus, while a Mission Context might specify the overall goals, 

constraints, and motives of the agent, a Sub-Context may control low-level physical 

movement. At any given time, only one Mission Context, one Major Context, and an 

optional Sub-Context may be active. Although CxBR does not explicitly construct 

plans, Grama et al. [26] describe how CxBR can be used to construct a plan 

consisting of the sequence of contexts that an agent anticipates using to achieve 

the objective.  

One of the weaknesses of CxBR is the selection and transition of contexts [17]. 

Historically, this has been accomplished with pre-defined sentinel rules; however, 

this approach results in rather inflexible transitions, especially in large systems. 

One solution to this problem, advocated by Gonzalez and Saeki [27], introduces the 

concept of Situation Interpretation Metrics (SIMs). SIMs quantify the situation in a 

tangible manner, revealing the difference between the current situation and what 

the agent’s needs. Under their Competing Contexts Concept, this difference 

between reality and the agent’s perceived goals (needs) drive the transition of 

contexts. By allowing contexts to compete amongst each other for the chance to 

handle the situation, it is significantly more likely that the context best suited will 

become active. The context that most effectively addresses the current agent’s 
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needs by achieving or partially achieving the goal state is deemed the best context 

and wins the competition. Through this approach, selecting and transitioning to a 

context is no longer fixed through pre-programmed sentinel rules, but changes 

dynamically as the situation and agent needs change. 

Salva [17] extends this work in context transitions with the concept of enabling 

processes and interruptions. Enabling processes can be viewed as the pre-

requisites for an agent to transition and remain in a context. Interruptions 

represent events that disrupt the enabling processes, thus putting the whole plan 

at risk of incompletion. Any interruption requires a change in the plan. Depending 

on the implications of the interruption, an alternative context may be available 

which will still allow the agent to complete its goals. Not only does this approach 

simplify replanning, but the concept of interruptions carrying specific implications 

provides an easy method for determining the consequences of events that occur. 

The limitation of the approach is that interruptions and alternative contexts must 

be specified a-priori, which is impractical in a dynamic real-world environment. 

2.2.1.5 MULTI-AGENT ARCHITECTURE 

While most contingency planning approaches operate in single agent systems, 

Micacchi [28] extended these ideas into soft real-time environments with multiple 

agents. In his a multi-agent system, the different types of agents include a central 

coordinator agent that tasks worker agents with goals to achieve. The worker agent 

is responsible for achieving the goal and reporting back to the coordinator. To 

operate within the constraints of a soft real-time environment, unexpected events 

are separated into three categories: opportunities, potential causes of failure, and 

barriers. While opportunities have no detrimental impact on the plan, barriers 

prevent the plan from achieving the goal. Potential causes of failures may become 
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barriers in the future if the current plan is continued without any modifications. A 

list of hard-coded responses, or contingency plans, is associated with each 

unexpected event. When a worker agent encounters an unexpected event, it first 

determines whether one of the response contingency plans is appropriate, meaning 

it will lead to the successful completion of its task. If so, the response that resolves 

the effects of the event the least amount of time is selected. If no appropriate 

response exists, the worker agent sends a panic message back to the coordinator 

and awaits a new task or command, thus passing off the burden of determining 

consequences. Because each contingency plan is built into the system at 

construction time, reasoning about the consequences is rather limited. 

2.2.2 DYNAMIC ANALYSIS 

Dynamic analysis, in contrast to pre-installed contingency plans, attempts to 

analyze the effects of the unexpected event on the plan and determine how the plan 

can be salvaged without resorting to pre-defined contingency plans. In short, 

dynamic analysis extracts more information from the effects of events and 

processes this information more intensively to develop a new plan that depends 

only on normal, available actions. If it is possible to repair the plan, the process of 

dynamic analysis should yield an alternative sequence and/or selection of actions 

for the agent to execute that will successfully complete the plan goals. While a 

computationally and cognitively more difficult endeavor, this has the distinct 

advantage of providing an agent with the flexibility of reasoning about any 

unexpected event, not just those programmed by the developer. In the previous 

example of waiting in a checkout line, an event consisted of the person at the front 

of the line having problems with the credit card machine. In this situation, an agent 

using dynamic analysis will use the effects of the event (delayed checkout) to 
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determine the consequences (missed movie show, etc). Once the agent realizes the 

current plan is no longer tenable because it will result in unachievable objectives, 

the agent can begin the process of trying to adjust the plan by rearranging the 

order of actions or adding new actions to mitigate the effect of the event. For 

example, the agent may find that getting out of the line and walking over to another 

line is an appropriate solution which will allow the agent to achieve its goal.  

Several approaches can be seen in related literature. 

2.2.2.1 EXTERNAL TRANSITIONS 

Nareyek and Sandholm [29] present the concept of external transitions to develop a 

planner that can discover indirect consequences and exploit the combination of 

parallel actions and events. Instead of representing an event as a single set of 

effects that take place at a certain point in time, they define external transitions as 

the ongoing changes in the world that result from the occurrence of an event. From 

this, they develop an enhanced rule-based system that can reason about indirect 

consequences. Indirect consequences form when the effects of simultaneous actions 

executed by multiple agents and/or events interact to produce results not originally 

intended. As a plan consisting of actions from multiple agents or events working in 

parallel is built, the plan is dynamically analyzed for unanticipated results, which 

are recorded and stored as indirect consequences. Avoiding the consequences of 

unexpected combinations of actions or events allows the replanning process to 

achieve the goals of the agent while taking into account unexpected events. 

Because events are defined similarly to actions in that they have specific 

preconditions, this method works well to determine side effects, but has some 

limitations when it comes to determining the consequences of unexpected events. 

Although this linkage of events to preconditions allows events to activate under 
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known situations, it defeats the purpose of the unexpectedness of events because 

now the agent knows when particular events will occur and under what conditions. 

In order for realistic event modeling, events should be able to occur without any 

apparent reason to mimic the sudden appearance of problems in the real world. 

2.2.2.2 SIMPLANNER 

As an extension of GraphPlan, Onaindia et al. [30] presented the SimPlanner 

simulator that permits an agent to perform planning, execution monitoring, and 

replanning throughout the duration of the agent operation. This interleaving of 

planning and execution provides several advantages. First, any change in the 

environment, such as the occurrence of an unexpected event during execution, is 

detected by the monitoring module and subsequently incorporated into the plan, 

invoking the replanning module if necessary. When an unexpected event occurs, 

the system assumes the current action can finish unaffected, but the remaining 

action sequence is dynamically analyzed to see how the event possibly impacts the 

rest of the plan. If the plan is affected as determined by unsatisfied preconditions 

(i.e. the event prevents future planned actions from executing), the planner 

attempts to incrementally change the plan so as to follow the original plan as close 

as possible without sacrificing a more effective solution. In effect, SimPlanner 

recognizes the consequences of the event and attempts to shift the plan a little bit 

at a time until the consequences disappear. Once a valid solution is reached, the 

agent can continue to execute the repaired plan and achieve the goal. 

Through this method, SimPlanner can monitor the execution of the plan, 

anticipating the consequences of events and readjusting the plan as necessary. 

While this represents a good start, several problems become evident. First, the 

assumption that the event will not impact the currently executing action may not 
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always be valid. In some situations, such as a missile launch by an enemy agent, 

the agent may want to immediately terminate the current action and pursue a more 

reasonable plan of action, such as evasion. Another limitation of the model is its 

inability to reason about the availability and consumption of resources required by 

actions. Finally, all actions are assumed to be instantaneous, which limits the 

feasibility of using such an approach in the real world. 

2.3 SUMMARY 

Throughout this chapter, planning, agents, multi-agent systems, and classical 

planning paradigms are described to provide the background material necessary to 

contribute to the overall understanding of the goals of this work. Additionally, state-

of-the-art literature addressing how consequences are detected and resolved has 

been reviewed. Now that this background has been discussed, the subsequent 

chapters will draw from relevant ideas and concepts in this chapter to develop a 

model that automatically determines consequences of unexpected events. 
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CHAPTER 3: PROBLEM STATEMENT 

This chapter presents a concise description of the problem addressed in this thesis. 

3.1 PROBLEM DEFINITION 

Historically, simulations have provided an abstracted environment in which to test 

an algorithm or approach without the time or cost overhead of a physical or real-

world system [31]. Often, simulations were preferred because they did not suffer 

from physical sensor deterioration or the noise often found in the real world; in 

essence, assumptions were made to simplify the research [32] and to cope with 

limitations in processing power. As a result, agents in a simulation always knew 

what to expect and how to deal with any situation encountered. However, with 

demands for more accurate results in realistic environments and the ability to 

process more data through increases in computing resources, simulations grew 

more complex to better emulate real-world conditions. This increased availability of 

high power computing machines resulted in an increasing number of agents 

moving out of simple simulations into real-world systems, which caused many 

existing approaches to fail [32]. Analyzing these failures led to the conclusion that 

the inherent uncertainty of a real-world environment introduced events and 

situations that the agent was not able to handle. Agents could not effectively 

operate in the real world because existing models insufficiently addressed issues 

such as the dynamic nature of the environment and the incompleteness of an 

agent’s knowledge.  
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The problem this thesis addresses is that when faced with an unexpected event that 

dynamically affects the environment, how can an agent respond intelligently? More 

specifically, if an agent becomes aware of an unexpected event occurring either 

currently or at some point in the future, how can the agent automatically determine 

the consequences of the unexpected event on its plan in order to replan more 

effectively? Two important considerations play a role in this problem. First, this 

process must be automatic, eliminating static contingency plans designed for pre-

programmed plan interruptions. Secondly, this process must aid replanning. This 

means that the results of determining the consequences must be able to be 

interpreted by the agent. By gauging the future consequences, an agent should be 

in a better position to make more effective decisions.  

3.2 HYPOTHESIS 

Agents can automatically determine consequences of unexpected events by utilizing 

a model that incorporates the plan representation of GraphPlan, dynamic 

transitions of CxBR, and the relationship debugging features of slicing. 

3.3 CONTRIBUTIONS 

This research into automatically determining consequences of unplanned events 

can result in several important contributions:  

• A new model that provides an effective method for agents to deal with 

unanticipated situations through a framework that reasons about the 

consequences of unexpected events 
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• A test bench prototype from which “what-if” scenarios can be developed, 

tested, and deployed 

• A reusable programming library that other intelligent agents can utilize 
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CHAPTER 4: APPROACH 

Now that the problem has been concisely described and the relevant literature 

reviewed, this chapter proposes an approach to enable agents to reason 

automatically about unexpected events occurring during the execution of a plan. 

Through the development of the approach, the design phase of the proposed model 

as a reusable library is discussed. First, the purpose and benefits of developing a 

reusable library for the model is examined. Second, approach requirements are 

examined to determine what existing paradigms can be incorporated into the 

solution. Third, the proposed approach framework, named ADCUE, is introduced 

and overviewed. Fourth, each component in the ADCUE model is presented in 

detail to completely describe the foundation of the model. Fifth, planning and 

replanning as related to ADCUE agents is discussed. Sixth, the underlying 

technique of slicing is introduced as the major component of the proposed approach 

that aids in determining consequences. Seventh, the application of slicing to 

planning is described so as to facilitate the transition of this technique to a new 

domain. Eight, pseudo code for the algorithm that determines the consequences of 

unexpected events is provided to gain a deeper understanding of how the proposed 

approach works. Finally, examples are dispersed throughout the chapter for 

clarity’s sake.  

4.1 PURPOSE 

At the outset of this research project, the goal was to develop an initial model that 

could endow agents with the cognitive abilities to reason autonomously about how 

unexpected events affect the plan. It was envisioned that this work would be 
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expanded with subsequent research. Thus, in order for further work to be easily 

added and allow room for model expansion, a clear separation between the testing 

prototype and the actual core model implementation is necessary. By implementing 

the model as a library, the initial limited prototypes can later be abandoned while 

preserving and upgrading the library. Thus, the implementation performed for the 

purposes of this thesis is a multi-stage process: first, create a generic library 

encapsulating the model and reasoning methods and secondly, develop test cases. 

Each test case developed would be a separate application that utilized the 

functionality provided by the model. By using this approach, anybody desiring to 

develop a simulation where agents need to reason about the consequences of 

unexpected events can easily integrate it with the library. 

4.2 COMBINATION OF PARADIGMS 

When designing an approach to solve the problem of interpreting the implications of 

unexpected events, preexisting paradigms described in the literature were examined 

for suitability to the problem at hand. For various reasons mentioned previously, 

the approaches overviewed in Chapter 2 were found unsuitable. However, while no 

single paradigm could be applied directly to solve the problem, many of the 

approaches provided valuable contributions that could be incorporated into a 

future, more comprehensive model. In order to find the relevant paradigms that 

apply to the problem, a typical use case is examined and several core requirements 

of the final desired model are now specified.  
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4.2.1 TYPICAL USE CASES 

Two typical use-cases are envisioned. First, automatic consequence determination 

may be quite useful when creating and testing “what-if” scenarios. In this use-case, 

a user would create a plan (or help the system to generate a plan) and subsequently 

inject events into the system to observe the results of “what if so and so happens” 

scenarios. Employed in this manner, a user is more interested in the plan itself 

than the actual execution or simulation of the plan; the benefit to the user in this 

case is testing a plan for robustness under different operating scenarios and 

correcting weak links in the plan sequence.  

A second typical use-case scenario consists of an intelligent agent operating within 

a real or simulated environment. In this use-case, an intelligent agent is usually 

generating plans autonomously and must subsequently reason and respond to 

unexpected events in real-time. When this scenario is utilized by an agent, the 

execution or simulation of the plan to achieve some objective is considered more 

important. Here the benefit to the agent is the ability to recognize when unexpected 

events affect the plan, and then be able to aid the replanning process by 

determining the effects of events. 

4.2.2 APPROACH REQUIREMENTS 

From the use-cases mentioned in the previous section, it is clear that any developed 

model that automatically determines the consequences of unexpected events must 

satisfy several requirements. These requirements were used to evaluate existing 

paradigms for suitability to the specific problem at hand. Five core requirements of 

the final system were drawn up. For each of the first four requirements, a paradigm 
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has been selected to address the requirement and to be incorporated into the 

approach. The requirements are as follows: 

1. Plan Generation/Representation: Before any reasoning about events 

can take place, a plan must be provided by the user or generated by the 

agent. A plan must consist of a sequence of steps using environmental 

components such as goals, actions, and resources available.  

Selected Paradigm: Although it has some fundamental limitations as 

described in the literature review, GraphPlan is a well-respected planning 

approach in the STRIPS domain that can be used within static 

environments to build a plan. The representation of a plan in a graph 

format with each node representing a step to execute and each branch 

representing an alternate series of steps is particularly well suited to 

analysis. In addition to utilizing a graph representation, the key concepts 

drawn from GraphPlan include the concept of using sequences of actions 

to change an initial state to the agent’s goal state.  

2. Event Analysis: When an unexpected event does occur, the agent must 

have some method of analyzing the event and determining whether this 

event affects the plan and if so, the nature of the effects. 

Selected Paradigm: Through the relationship established between a 

program consisting of sequential instructions and a plan consisting of 

sequential steps, the technique of slicing used in debugging domains can 

be applied to analyzing a plan. The primary use for this technique in the 

planning domain is to analyze the dependencies between actions and 

events and preconditions. Employing the technique of slicing to a plan 
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can yield answers to the questions: Does this event affect the plan? If so, 

how? 

3. Dynamic Transitions: To adequately handle real-world environments 

with unexpected events, an agent must be able to dynamically transition 

from the current action to a new solution when an unexpected event 

renders the current plan untenable. Another important aspect of 

dynamic transitions is that the transitions are not hardcoded, i.e. the 

agent or the system builder should not directly link the occurrence of 

specific events to specific contingency plans. 

Selected Paradigm: Because of its definition of states and flexible 

transitions between states, Context-Based Reasoning (CxBR) has proven 

suitable for controlling the behavior of real-time agents in dynamically 

changing environments. While previous attempts to deal with event 

interruptions have relied on hardcoded contingency plans, incorporating 

the concept of hierarchical states (or contexts in CxBR terminology) and 

flexible transitions will enrich the final model. CxBR concepts will enable 

agents to adjust their behavior dynamically to situations they encounter. 

4. Incremental Updatability: One of the key aspects of any planning 

system is the flexibility to change quickly and adapt to new scenarios. In 

this case, plans should able to be incrementally updated through the 

introduction of events or new actions. For instance, during “what-if” 

scenarios, it is useful to add/remove/modify resources or inject events 

into the environment dynamically to test the robustness of the plan.  

Selected Paradigm: Because it attempts to model processes that are often 

subject to change, Contextual Graphs (CxG) was chosen as a paradigm 

keeping data up-to-date and consistent. By applying CxG’s feature of 
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Incremental Knowledge Acquisition, it is possible to easily modify the 

environment or plan. To support dynamically updating the environment 

components at runtime, this concept is extended to include injecting 

events into the model at any point in time. 

5. Agent Simulation: The final requirement of the proposed approach is its 

support for accurate simulation of an agent in a dynamic, changing 

world. This would require the inclusion of concepts such as time 

durations for actions, resource usage needed to accomplish a goal, and 

close to real-time execution. 

Approach: The final requirement of real-time agent simulation is a feature 

exhibited in many systems, but is unique to the final system because of 

the combination of various architectures that have differing levels of 

support for the simulation of agents. 

4.3 OVERVIEW OF ADCUE 

The approach proposed in this thesis is the Automatically Determining 

Consequences of Unexpected Events (ADCUE). ADCIE incorporates aspects from 

the aforementioned paradigms in addition to new features described in this 

chapter. ADCUE provides a simulation environment in which an agent can exist 

and operate. Furthermore, ADCUE provides an agent with built-in abilities to 

reason about the consequences of unexpected events. This is accomplished through 

the interaction between the various ADCUE components: 

• Attribute: A feature of a component represented by a name, type, and value 
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• Resource: A non-intelligent, material entity that can be used, produced, or 

synthesized by an agent through the execution of actions  

• Condition: A Boolean relationship between an attribute and a value that 

evaluates to true or false depending on the current state 

• State: The presence of one or more conditions, allowing a situation to be 

quantified and uniquely identified  

• Objective: The goal of an agent represented by a state that specifies the 

conditions that should be true for the agent to have accomplished the goal 

• Action: A black box, executable by an agent under necessary preconditions, 

that produces a change in the environment through resulting postconditions 

• Event: An action, without preconditions, executed by the environment or 

another agent, as perceived by the current agent  

• Agent: An intelligent entity with objectives to achieve by executing actions 

that produce/use/synthesize resources 

• Environment: Describes the system as a whole in terms of the previous 

components and any custom data attached to the simulation  

Using these components, a complex simulation can be constructed to represent 

real-world environments and situations. The ADCUE system is capable of 

representing objective-driven agents that plan, handle events, and replan when 

necessary. To further understand how each of these components contributes and 

enhances ADCUE, they are subsequently examined in detail.  
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4.4 MODEL COMPONENTS 

Each component in ADCUE has specific features that enable the construction of a 

realistic simulation that functions smoothly and correctly. In this section, the 

features of each component are described and examples are given to clarify how the 

component integrates within the model as a whole. The convention for a component 

name is to use italicized font, such as the resource Milk. To refer to attributes, the 

dot operator will be used; for instance, Milk.Spoiled might represent an attribute 

that becomes true when the resource Milk expiration date passes.  

4.4.1 ATTRIBUTE 

Attributes form the core of all other components and are used extensively 

throughout ADCUE. An attribute describes one aspect or feature of a component. It 

has three parts: 

1. Name: The name uniquely identifies the feature of the object. One 

example for the resource Milk might include Spoiled. 

2. Type: The value of the feature may be numerical, categorical, or Boolean. 

An attempt to set or modify the value of an attribute must abide by the 

type of the attribute (i.e. it should be impossible to set a categorical 

attribute to a numerical value). 

3. Value: The last part of an attribute is the actual value of the attribute. 

This describes the component in terms that the rest of the simulation 

can understand and typically changes to reflect the passage of time. The 

format of the value depends on the type. Numerical values may take on a 

value within the range of real or floating point numbers. Categorical data 
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is represented textually, and the type Boolean may be considered 

categorical with only two valid categories: true or false. 

4.4.2 RESOURCE 

A resource in a general sense can be defined as “an available means” [33]. In 

ADCUE, a resource represents a non-intelligent, material entity that is potentially 

useful to an agent in the system. Agents can consume resources, produce 

resources, or synthesize one resource into another through the execution of 

actions. Two pre-defined attributes are particularly important when considering a 

resource: amount and ownership. Any resource must have a finite amount or 

quantity; this value is likely to change throughout the execution of the simulation 

as the resource is produced and/or consumed. For future multi-agent 

considerations, ownership will play an important role. For example, if used in a 

battle simulator, ADCUE would need to clearly separate resources between 

opposing agents in addition to limiting or preventing the simultaneous usage of 

resources.  

4.4.2.1 RESOURCE EXAMPLE 

As mentioned earlier, the resource Milk can be viewed as a resource. It can be said 

to be produced by a Supermarket agent and consumed by a Person agent. 

Extending the example, a Person agent might synthesize Milk into another resource 

such as Chocolate Milk or Buttermilk Pancakes. An example of attributes for this 

resource might include those seen in Table 1. 
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Table 1: Example attributes for the resource Milk 

Attribute Type Value 

Amount Numerical Initial value: 1 gallon 
Location Categorical Refrigerator  
Ownership Categorical Agent.Smith 
Spoiled Boolean Initial value: false 
Temperature Numerical Initial value: 40° F 

4.4.3 CONDITION 

A condition can be defined as a “state of being” [33], and must always evaluate to 

true or false: either the condition exists or it does not. In real life, a condition might 

be represented with the question “Is the milk spoiled?” This condition is true or 

false. In ADCUE, a condition is represented with a relationship between an 

attribute and the value for the attribute. Thus, a condition has three parts: the 

attribute, relationship, and value. Relationships available in ADCUE are: equals, 

not equals, greater than, less than, greater than or equal, and less than or equal. 

Conditions are used extensively when determining whether an action can or should 

be executed. In our real-world “Is the milk spoiled?” example, the condition might 

indicate whether you can have cereal in the morning. ADCUE represents this 

condition as “Milk.Spoiled not equal true”. Although it reads slightly differently for 

ease of computation, the semantic meanings are the same.  

4.4.4 STATE 

Because a single condition will typically not convey all the information necessary to 

define a situation, multiple conditions may be combined together to form a state. 

Thus, a state can be used by an agent to identify situations. It can be said that an 

agent is in a state (or situation) only when all the conditions that form the state are 
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true. It is important to note that states do not usually specify all possible conditions 

that can occur at any one given time. Often only a few key conditions are necessary 

to determine the state, such as “Tire.Flat equals true” and “Jack.Broken equals 

true”. The fact that the condition “Car.Color equals white” has little relevance to the 

fact that the agent is in a state with a broken car that cannot be easily repaired. 

This technique replicates CxBR’s method of limiting the scope of what the agent 

considers to only what is relevant in the current state or context. An example might 

include state named Enough Milk that combines the condition as “Milk.Spoiled not 

equal true” with “Milk.Amount greater than 1 cup”. By checking whether these two 

conditions are true, the agent can determine whether or not it is in the state 

Enough Milk. An agent is only in the Enough Milk state when both conditions 

evaluate to true.  

4.4.5 OBJECTIVE 

When planning, usually a desired outcome exists as a set of goals or objectives. 

ADCUE uses the component objective to describe the final state which an agent is 

trying to bring about by executing actions. From the ADCUE point of view, there is 

no difference between a state and an objective except the special connotation that 

an objective is the desired outcome or state that the agent wishes to exist. In fact, 

achieving the objective might signal the end of the simulation. Because the 

conditions contained within the objective may or may not be true depending on 

whether the objective has been achieved, the agent’s goal is to find a way to make 

all the conditions true and bring the state into existence. Another way to view 

objectives is the end result of executing a series of actions that incrementally 

change the state of the environment until the state matches the state specified as 

the objective.  
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4.4.5.1 EXAMPLE 

A sample objective, in natural language terms might be “agent Smith wants to eat 

after he wakes up in the morning.” Translating this to the ADCUE model, the 

objective might be represented with a state named Not Hungry that consists of two 

conditions: “Smith.Location not equals bed” and “Smith.Hungry equals false.” This 

objective would guide the agent Smith to execute the action Get out of Bed followed 

by the action Eat Breakfast to change the initial state of the environment satisfy the 

conditions specified by the objective.  

4.4.6 ACTIONS 

In real life, an action may be defined as a set of steps performed. For simplification 

purposes, ADCUE views actions in a similar manner. One exception is that ADCUE 

treats all actions as “black boxes” in that an agent can execute an action to achieve 

some effect on the environment. This black box treatment means ADCUE would 

happily accept an action named Transport Item that instantaneously transferred an 

item to the moon without questioning how the action worked. Neither the agent nor 

ADCUE care what physical processes or steps need to be taken in order to bring 

about the conditions. 

To execute an action, an agent must ensure the set of conditions associated with 

the action are all true. Every condition within this set of conditions, called the a 

precondition, must be satisfied before the action can be run. For example, the 

action Cook Pancakes may require the resources Pancake Mix and Stove. These 

would correspond to preconditions “Pancake Mix.Amount greater than 1 package” 

and “Stove.Broken not equals true”. Without these preconditions being true, it is 

impossible to execute the action Cook Pancakes. Once the preconditions for an 



40 
 

action become true, the agent is free to execute the action to bring about the 

effects, or postconditions. Postconditions represent the conditions that are true 

after the action executes and are defined per action. It is possible for multiple 

actions to accomplish similar goals, but differ in resources used, leading to the 

realistic and complex interaction between resources and actions available to the 

agent. 

4.4.6.1 EXAMPLE 

Returning to the cooking example, agent Smith may have a number of actions 

available to achieve the objective Not Hungry, such as Pour Cereal and Milk, Cook 

Pancakes, and Order McMuffin®. Execution of any of these actions will result in the 

same basic effect or postcondition, namely Smith.Hungry, will become false. 

However, they differ in preconditions and other postconditions. Pour Cereal and 

Milk will reduce cereal and milk resources. Cook Pancakes will consume extra time 

and require additional cooking utensils, such as a pan. The action Order McMuffin® 

has preconditions of Car and Money and may have a postcondition of higher 

cholesterol. As can be seen, complex interactions can be built with relatively little 

effort. 

4.4.6.2 SIMULTANEOUS ACTIONS 

Modeled after CxBR’s “one active context” limitation, ADCUE permits agents to 

execute only one action at a time; thus, an agent can never perform two actions 

simultaneously. Since the functionality of executing simultaneous actions may be 

desired in some situations, such as executing the actions Talking and Driving at the 

same time, the concept of multiple inheritance is introduced. Inheritance allows a 

parent action to pass the full properties of itself to a child action. The child action 
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can be viewed as a copy of the parent action with the addition of any 

customizations or additions specific to the child. Multiple inheritance allows an 

action to automatically incorporate the characteristics of more than one distinct 

parent action. Used in this manner, multiple inheritance allows the system designer 

to combine the effects of multiple actions into a single new action. For example, the 

action Talking and Driving, a child of both the Talking action and the Driving action, 

embodies all the characteristics of its parent actions, including postconditions. The 

new action’s postconditions are the combination of each individual action. Thus, 

from the perspective of an ouside observer, the execution of the child action Talking 

and Driving is no different than executing the parent Talking action and Driving 

action simultaneously.  This effectively achieves the same end as simultaneous 

actions. While more work is required to manually create child actions and specify 

inheritance, this approach avoids the compatibility problem that may occur under 

automatic action composition whereby an agent may try to execute Get Dressed 

and Drive to Work simultaneously to save time.  

4.4.6.3 ACTION LEVELS 

CxBR employs a hierarchical structure for contexts that lends itself well to 

organizing states into logical clusters of differing detail. ADCUE applies this 

functionality to actions by allowing levels to be associated with actions. Currently, 

“high” level and “low” level actions are utilized. For the allowance of more detailed 

actions in future expansions of ADCUE, “lower” level and “lowest” level actions are 

reserved, but not implemented. High level actions represent the lowest granularity 

of an action, and decreasing action levels (low, lower, lowest) indicate increasing 

amounts of details. The hierarchy allows high level actions to be composed of many 

lower level actions. For instance, a high level action might be Eat Breakfast, while a 
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low level action for Eat Breakfast might be Cook Pancakes or Chew. Consequently, 

the lower level action specifies how to accomplish the high level action. This 

hierarchical grouping of actions has a number of far reaching impacts. First, this 

organizes actions into more natural and manageable structure. Secondly, action 

levels provide a means of defining the amount of detail within a simulation. While 

one simulation might only require high level actions, another might require lower 

level actions to physically control the movement of the agent. Finally, this allows 

the planner to plan on several levels. The planner may initially generate a plan 

using only high level actions and then expand the plan using the lower level 

actions, thus saving computational time. This also allows the planner to generate a 

high level plan and then fill in the details later by expanding high level actions with 

lower level actions as necessary.  

4.4.7 EVENTS  

Events have many similar properties to actions. Both affect the world through 

predefined postconditions. However, there are some key differences. First, events 

have no preconditions, i.e. they can execute at any time. Events are triggered 

randomly (to simulate the randomness found in the real world) or by the user, who 

may be interested in seeing how the agent will react to the event. Another important 

difference is the frame of reference. An event can be considered an action that is 

perceived, but not initiated, by the current agent. Under this definition, the action 

executed by agent Jones is perceived as an event by agent Smith. Events are said to 

belong to and be executed by the environment. For example, the event Meteorite 

Strike may be triggered with a certain probability by the environment or by the user 

of the simulation.  



43 
 

4.4.8 AGENT 

An agent is an intelligent entity of a particular class (person, tank, etc.) that is 

capable of carrying out actions and reasoning about events. An agent uses actions 

and resources to change the current state to reach some end state, or objective. The 

actions the agent will tentatively execute in the future are referred to as the plan 

and are generated with the help of the reasoning model, which is described later.  

4.4.9 ENVIRONMENT 

The environment encapsulates all the previously described model components and 

provides the interface to the simulation. It also contains global attributes such as 

the current time, location, or weather. The environment is also responsible for 

handling the execution of events, either probabilistically or upon the command of 

the user. Finally, the environment may specify application-dependent information 

such as geography, opposing military movements, etc.  

4.4.10 SELF-DESCRIBING COMPONENTS 

One important requirements of ADCUE is that all components must be completely 

self-describing. Self-describing components keep track of their status and perform 

internal housekeeping, thus encapsulating both data and functionality within the 

component. To illustrate, an agent operating within a traditional rule-based system 

might check the expiration date on a milk container to see whether the resource 

Milk is still usable. However, this encourages sprawling dependencies between 

components; furthermore, the check must be duplicated for each agent that uses 

the resource Milk, a practice discouraged when building software systems. In 
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ADCUE, the burden of knowledge is shifted to the component itself. Under this 

approach, the milk container should describe itself completely, including the 

knowledge of when it is expired. For example, when the milk container detects it 

has expired, it should update its attributes to reflect the new condition of itself (i.e. 

the attribute Milk.Spoiled should be set to true). 

The benefit to this approach is that it modularizes the design by placing the burden 

of knowledge, not on the agent, but on the individual component. By enforcing this 

requirement, it is possible to add, remove, modify, or fine-tune components without 

necessarily requiring any modification of any other component, including the agent. 

Furthermore, this allows the modification of the system to occur dynamically at 

runtime, even when the agent is in the middle of completing a mission. This is 

particularly important for “what-if” scenarios where a user of the system may want 

to add or remove resources or other components to the system to see the effects of 

such modification.  

4.4.10.1 EXAMPLE 

Because of the self-describing requirement, two attributes of Milk, Spoiled and 

Temperature, must be updated to keep the state of the component up-to-date. For 

example, if attribute Location changes from “Refrigerator” to “Counter,” the resource 

must periodically update the Temperature attribute to reflect the fact that the milk 

is getting warmer.  

4.4.11 DYNAMIC COMPONENTS 

Because of the nature of the model and the self-describing requirement, ADCUE is 

designed so that a component can be modified dynamically during runtime while 
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still preserving the integrity of the system. This is achieved by the injection of 

events into the system. For example, in a simulation of an Unmanned Aerial Vehicle 

(UAV) surveying geographic locations, the user of the simulation may want to inject 

an event predefined by the system developer, such as Hostile Missile Launch. 

However, consider the event Rats Chewed on Wires – an event certainly not pre-

defined. If the user wishes to inject such an event to see how it affects the agent, 

the user could define the effects as “disable a random piece of equipment on the 

UAV.”  After inputting the event into ADCUE, the user could subsequently inject 

the event into the environment and observe the agent’s response. This allows 

scenarios to be built by adding/removing components and observing the effects on 

the system. 

4.5 PLANNING 

Since the goal of every agent is to achieve its assigned objectives, planning is the 

first step in calculating how the agent can use the actions and resources available 

to it to bring the end state into existence. Given a state, or set of conditions, that 

must exist for the agent to consider its mission a success, what sequence of actions 

should the agent schedule to run? Because ADCUE draws a significant amount of 

conceptual material from the GraphPlan paradigm in terms of specifying how 

agents use actions to achieve goals, the approach presented here is similar to that 

found in GraphPlan papers. Both GraphPlan and ADCUE employ a backward 

chaining, demand-based planning system.  
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4.5.1 PLANNING PROCESS 

The planning process of finding a sequence of actions can be described as an 

incremental process that finds actions in reverse chronological order, leading from 

the objective to the current agent’s state. The goal of the process is to produce a 

directed planning graph that links the single entry node representing the current 

state to the single exit node representing the end state (objective) via a series of 

actions. Each unique path from the start node to the end node represents a 

potential plan that the agent can execute to achieve the objective. The process 

involves four steps: 

1. Check the difference between the current state and the goal state. The 

difference between the two states will be the attributes that need to be 

changed in order for the objective to be achieved. These attributes are 

referred to as objective attributes. In some instances, an objective might 

be partially completed when it is assigned to the agent, in which case the 

number of objective attributes will be less. If no objective attributes are 

found, no difference exists between the initial and goal states. Thus, the 

agent has already achieved the objective and no plan is necessary.  

2. Perform demand-driven action searching. From step 1, the process has 

compiled a list of objective attributes. A search is initiated for actions 

whose postconditions modify these objective attributes. It can be said 

that the objective demands actions that affect the objective attributes. 

The actions found are referred to as candidate actions because they 

represent actions that may result in the accomplishment of the objective. 

Generally speaking, it is not possible to determine whether any of these 

candidate actions will definitely lead to the objective. This will be 
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determined later. However, depending on the complexity of the 

postconditions, it may be possible to eliminate candidate actions that 

have no possibility of leading to the objective by optimizing action 

postconditions with objective preconditions. These candidate actions are 

linked to the objective, forming the end of a directed graph with the 

objective representing the terminal node. 

3. Calculate the backwards state. For every candidate action linked to the 

objective, it is possible to calculate the state existing before the action 

was executed (this is known through the preconditions).  The result is a 

list of intermediate states; an agent in one of these states could execute 

the appropriate candidate action and achieve the objective. If the agent’s 

current state matches one of these intermediate states, the agent has 

found a potential plan of some sequence of actions that may lead to the 

goal state. Since a path between the current state to the end state has 

been achieved, this path is considered finished.  

4. Develop the backwards chain. From each set of intermediate states that 

do not match the current state (i.e., the action cannot be directly 

executed by the agent), go to step 2, treating the intermediate state as 

the objective. This recursively traces plans from the objective to the 

agent’s current state. A limit on the number of steps in a plan will 

prevent infinite backwards chaining. 

This process may incorporate all action levels, or hone in and plan at a specific 

action level to build plans of different granularity. At the end of this process, all 

“dangling” paths that did not find a way to reach the agent’s current state are 

eliminated. This may occur because a particular resource was not available. For 

instance, the action Drive can be used to transport items, but only if a car is 
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available. If no graph path backtracked completely from the objective to the agent’s 

current state, two possibilities exist. First, no combination of actions that the agent 

can execute will accomplish the objective. Second, a combination of actions to 

reach the objective exists, but was not found because the maximum number of 

steps allowed in the plan was set too low in step 4. If a path exists between the 

agent’s current state and the objective state, at least one potential plan exists. Each 

unique path represents a potential plan. Validating the plan can be done by 

analyzing each action, starting with the current state to the finish state to ensure 

all the preconditions and postconditions match. Alternatively, the agent can 

perform the alternative plans in hyper-real-time. The actual path selected among 

the potential plans is agent dependent. For instance, the agent may want to 

maximize time or minimize monetary cost. 

There are several important advantages to using this approach. First, the 

backwards chaining constrains the plans generated so as to reduce the 

combinatorial explosion that would occur if planning in a forward chaining manner. 

Secondly, the planning graph is a convenient way to organize plan alternatives as 

each path is unique path from the current state to the object represents a different 

plan that will achieve the goals of the agent. All precondition dependencies are also 

explicitly laid out and specified in the planning graph. Finally, the graph provides 

an easily traversable structure for further analysis, such as determining the effects 

of events.  

4.5.2 EXAMPLE 

Consider the agent Smith waking up in the morning wanting to eat breakfast. Since 

Smith is hungry when he wakes up, the objective state that Smith wants to 
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As seen in the Figure 2, the high level planning graph consists of matching high 

level actions that lead from the agent’s current state (Smith is in bed) to the 

objective state (Smith is not hungry). Notice that the attribute in the objective state, 

Smith.Hungry was traced back to the action Eat Breakfast, which in turn, was 

traced back to the action Get out of Bed. Since this action can be directly executed 

by the agent in its current state, the planning process finishes, yielding a high level 

plan. If desired, this plan can be expanded in more detail by running the process on 

the low level actions associated with Eat Breakfast. To do this, the action Eat 

Breakfast’s preconditions are treated as the current state and the postconditions 

are treated as the objective state. Figure 3 is the corresponding low level planning 

graph. Notice that agent Smith has several different options for eating breakfast 

now. 

 

Current State: 
Smith.Hungry == true 
Smith.Awake == false 

Get out of 
Bed 

Eat  
Breakfast 

Objective State: 
Smith.Hungry == false 

Preconditions: 
• Smith.awake == false 
Postconditions: 
• Smith.awake = true 

Preconditions: 
• Smith.hungry == true 
• Smith.awake == true 
Postconditions: 
• Smith.hungry = false 

Figure 2: Planning graph representing the high level plan 
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Figure 3: Planning graph representing low level plan 

4.5.3 REPLANNING 

In ADCUE, replanning because of the occurrence of an expected event can be 

performed via two methods. If multiple plans exist on the planning graphs (more 

than one unique path from the current state to the objective exist), it may be 

possible to select a different, already-generated plan path that is unaffected by the 

event. For instance, if it is known that Milk is spoiled, the agent may select the 

action Order McMuffin® instead. If the event has far-reaching effects, it may be 

better to start the process of planning from scratch, considering the postconditions 

of the event from the start of the process. In this situation, it is possible that the 

alterations from the event postconditions will give the planner the information 

necessary to generate new action links between states that plan around the effects 

of the event. 

 
Drive to 

McDonalds 
Order 

McMuffin 

Cook 
Pancakes 

Eat  
Meal 

Pour 
Milk/Cereal 

Get out of 
Bed 

High Level Action: 
Eat Breakfast 

Initial State: 
Smith.Hungry == true 
Smith.Awake == false 

Objective State: 
Smith.Hungry == false 
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4.6 INTRODUCTION TO SLICING 

Now that the ADCUE framework has been presented, each component described in 

detail, and the methods of planning have been described, it is important to 

investigate the mechanism that operates within the framework and enables the 

agent to automatically determine the consequences of events. This mechanism is 

the technique of slicing.  

4.6.1.1 HISTORICAL PERSPECTIVE 

Originally designed as a technique to aid debugging programs, slicing involves 

analyzing a particular statement in terms of data and control dependencies [34]. 

Slicing constricts the view of a program’s source code to a small piece, typically a 

single statement called a slice, in conjunction with all the other statements in the 

program that can potentially affect the slice. In essence, by removing or “slicing 

away” everything irrelevant to the statement under analysis, a debugger can ignore 

all extraneous details. The remaining statements can be categorized as data 

dependencies, statements that modify the data used by the slice, or control 

dependencies, statements that define the flow of execution to the slice. Slicing can 

be performed in a backwards or forwards manner. Backwards slicing shows how 

previous statements affected the current slice; forward slicing shows how the 

current slice influences future program statements.  

4.7 SLICING APPLIED TO PLANNING 

In addition to applications in debugging, slicing is a technique that can be applied 

to planning. Instead of working on statements in a program, slicing can be 
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performed on the steps in a plan. Data dependencies become dependencies in 

environment conditions and control dependencies become dependencies in 

previously executed steps. By isolating single actions, a slice will show the 

relationship between conditions in the environment (data dependencies) and the 

flow of previous actions (control dependencies). In a similar way that slicing can be 

used to analyze a running program, this technique of slicing can be applied when 

introducing an event into an already executing plan. By tracing the causes of the 

event upstream (backwards slicing) and the effects of the event downstream 

(forwards slicing), the dependencies can show which parts of the plan will be 

affected by the event. Adapting the process of slicing to planning in this manner, an 

agent can begin to dynamically analyze the relationships between the effects of an 

event and planned actions, inferring consequences along the way. 

4.7.1 PLAN REPRESENTATION  

To apply the technique of slicing to the domain of planning, plans must be in a 

format similar to that of a program’s source code. A program always has a defined 

start and end of execution with a sequence of instructions to execute in between. 

Likewise, plans can be represented as steps, or actions, stored in nodes of a graph. 

The entry node represents the beginning of the plan (the current state) and the exit 

node represents the end of the plan (the desired or goal state). Relationships 

between nodes are specified by action preconditions and postconditions. The 

execution of an action depends upon preconditions and is characterized by the 

resulting postconditions. Preconditions represent control dependencies because 

they define when it is possible for an action to run; postconditions represent data 

dependencies because it reflects the effects of the action’s execution on the 
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environment. Through this representation, the technique of slicing can be applied 

to the graph to analyze the plan when unexpected events occur. 

4.8 PROPOSED APPROACH ALGORITHM 

When an event occurs, the proposed approach needs to answer two questions: 1) 

Does the event affect the plan? 2) If so, what are the effects of the event on the 

plan? To answer these questions, a customized intersection operator is proposed for 

use in conjunction with the slicing technique described in previous sections.  

4.8.1 INTERSECTION OPERATOR 

The intersection operator ∩ is used to detect whether an event affects the plan. It 

takes two parameters, an action and an event. Conceptually, the intersection 

operation detects conflicts between event postconditions and action 

preconditions/postconditions. If the intersection operator results in an empty set, 

the event does not directly affect the action; if the intersection results in a non-

empty set, a potential conflict exists between the action and the event. 

Mathematically, the intersection operator between Event E and Action A is defined 

as: 
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As can be seen, the intersection operator is composed of two separate intersections 

that are subsequently joined with a union. This represents the two different 

conditions that must be true for an action to remain unaffected by an event. First, 

the event must not affect any of the action’s preconditions and second, the event 

must not affect any of the action’s postcondition attributes. In laymen’s terms, the 

first part of the intersection operator can be read as: if the event modifies attributes 

used to determine if the action can be executed, the event may prevent the agent 

from using the action in the plan because the preconditions may no longer be 

satisfied. The second part detects a potential conflict between the event and action 

postconditions: both are attempting to change the same attribute to potentially 

different values. 

4.8.1.1 TESTING INTERSECTION HYPOTHESIS 

In effect, an intersection operation between an event and action that results in a 

non-empty attribute set is proposing a null hypothesis. This null hypothesis states 

that based on the overlap between event and action attributes, the action affects 

the event. For instance, consider Case 1 in Figure 4 with action Sunbathe and the 

event Rainburst. Both set the attribute Smith.Wet; the difference is that Sunbathe 

sets this attribute to false and the event Rainburst sets the value to true. Because 

the attributes are being set simultaneously by different components, a situation 

which is referred to as attribute overlap, the intersection operator will hypothesize 

that the event affects the action. For Case 1, this is a valid hypothesis. However, in 

other situations the null hypothesis may not be true. If the action Sunbathe is 

swapped with Swim as seen in Case 2, the both the action and event modify the 

attribute Smith.Wet – but this time they both set the value to true. In this case, the 
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null hypothesis should be rejected because although the attributes overlap, there is 

no conflict between the action and event.  

 

Since the intersection operator only reveals a potential conflict between an action 

and event, the null hypothesis generated must be tested. In simple cases, such as 

the beach example, this can be done without much effort. However, in more 

dynamic situations where actions may result in different effects depending on 

various environmental factors, it may not be as straightforward. In these instances, 

it may be necessary to simulate the rest of the plan and examine the expected 

future values of the attributes to see if a conflict exists. Based on calculated future 

attribute values, it is possible to accept or reject the null hypothesis that the event 

affects the action.  

In general, the intersection operator can affect actions in one of three possible 

levels: impossible, delta, or null. An event may change attributes in the 

environment such that the preconditions to an action are no longer satisfied, thus 

Action 

Sunbathe 

Event 

Rainburst 

Smith.Wet 

True False 

Case 1 

Null Hypothesis Accepted 

Action 

Swim 

Event 

Rainburst 

Smith.Wet 

True True 

Case 2 

Null Hypothesis Rejected 

Figure 4: Null Hypothesis Validation 
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making it impossible to execute the action. Another possibility occurs when the 

event changes the postconditions of the action, thus producing a delta, or change 

in the effect of the action. Finally, a null result indicates the event has no effect on 

the action. 

4.8.2 PLAN SLICING 

The combination of the slicing technique and the intersection operation provides a 

powerful pair of tools for analyzing the plan stored in the planning graph to find 

any consequences of unexpected events. The algorithm for determining whether an 

event affects the plan can be described with the pseudo code in Table 2: 

Table 2: Pseudo code for determining plan affectedness 

Determine Plan Affectedness by Event E 
 
Set Plan P.Affected to false 
Foreach Action A in Plan P 
    If ( A ∩ E) not empty 
        Set Plan P.Affected to true 
        Stop 
 

This pseudo code checks every step (action) in the plan to see if the action will be 

affected by the event. If none of the steps in the plan are affected, the plan as a 

whole is unaffected. Once it is determined that an event will affect the plan, the 

consequences of the event can be inferred by determining the difference between 

executing the plan with the event versus without the event. This difference can be 

extracted from the list of conflicted attributes provided by the intersection operator. 

The pseudo code for this procedure can be found in Table 3. 
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Table 3: Pseudo code for determining event consequences 

Determine Consequences of Event E 
 
Foreach Action A in Plan P 
    If ( A ∩ E) not empty 
        Foreach Attribute Attr in ( A ∩ E) 
            Add Attribute Attr to List diff 
 
Return List diff 
 

4.8.3 EXAMPLE 

 

Figure 5: Planning graph with events 

Consider a plan for Agent Smith to wake up in the morning and eat breakfast.  A 

number of different actions are available, such as Pour Milk And Cereal, Cook 

Pancakes, and Order McMuffin®. Several events can affect the plan, including Sour 

 
Drive to 

McDonalds 
Order 

McMuffin 

Cook 
Pancakes 

Eat  
Meal 

Pour 
Milk/Cereal 

Get out of 
Bed 

High Level Action: 
Eat Breakfast 

Initial State: 
Smith.Hungry == true 
Smith.Awake == false 

Objective State: 
Smith.Hungry == false 

Sour Milk Free McMuffin 

Sunny Forecast 
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Milk, Free McMuffin®, and Sunny Forecast. See Figure 5 for a graphical 

representation of the plan with injected events listed in bubbles.  

Given the above scenario, it is desirable to know how each of the three events 

affects the system: 

• Pour Milk and Cereal ∩ Sour Milk: This event represents Agent.Smith walking 

to the refrigerator in the morning and discovering that the milk gone bad. 

The event Sour Milk will make it impossible for the action Pour Milk and 

Cereal to be executed since one of the preconditions of the action Pour Milk 

is “Milk.Spoiled not equals true”. 

• Order McMuffin® ∩ Free McMuffin®: This event simulates Agent.Smith 

receiving a “buy one, get one free” McMuffin® deal at McDonalds. The event 

Free McMuffin® produces a delta or change in the postconditions of the 

action Order McMuffin® by doubling the number of meals. Notice, that not 

all unexpected events are detrimental; a free McMuffin® is a pleasant 

surprise (unless agent Smith is on a diet). 

• Drive ∩ Sunny Forecast: The final possibility is null and is seen when the 

event Sunny Forecast is heard during the agent’s Drive action. In this case, 

the event has no effect whatsoever on the action. Thus, the event effects on 

the plan is null and the affected attribute set is empty.  

4.9 SUMMARY 

This chapter presented the methods used to determine the consequences of an 

event on the plan. The two main components introduced were slicing and the 

intersection operator. While slicing provides an intuitive method of analyzing plan 
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dependencies, the intersection operator calculates if and how much an event affects 

steps within the plan. The proposed solution of utilizing slicing and the custom 

defined intersection operator to within a plan consisting of nodes in graph creates a 

powerful reasoning mechanism whereby consequences of unexpected events can be 

automatically determined. Furthermore, the ADCUE framework was presented as 

the combination and logical extension of several preexisting paradigms. These 

paradigms include CxBR, slicing, CxG, and GraphPlan. ADCUE emphasizes robust 

planning, the ability to analyze events, dynamic transitions that do not require 

hardcoded contingency plans, easy upgrades, and real-time simulation. To develop 

such a model, ADCUE uses the components Attribute, Resource, Condition, State, 

Objective, Action, Event, Agent, and Environment. By augmenting proven 

techniques and applying them to new problems, the reasoning model provides a 

comprehensive solution to the problem of automatically determining the 

consequences of unexpected events.   
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CHAPTER 5: IMPLEMENTATION 

This chapter describes the implementation of the ADCUE approach presented in 

the previous chapter. First, the environment and the encapsulation of ADCUE into 

a library are discussed. Secondly, desired usage and system input/outputs are 

overviewed. Thirdly, the architecture of the code are investigated, including class 

diagrams of key components, followed by a fourth section providing how the 

ADCUE algorithm operates.  

5.1 LIBRARY ENVIRONMENT 

The environment to implement ADCUE in was Microsoft Visual Studio C++ 2005 on 

a Windows platform. C++ was chosen for purposes of efficiency and speed, and the 

Microsoft IDE was chosen for productivity. While the test cases should not require 

heavy computational resources, it is expected that in a non-trivial real-world 

situation, ADCUE will be expected to perform in real-time in complex simulations. 

While C++ is not inherently as portable as other popular languages such as Java, 

effort was extended to ensure that all code written was cross-platform so that 

future expansions could have a wide range of operating environments from which to 

select. To encourage use and reuse in additional projects, a strict coding and 

commenting standard was followed. The freely available tool Doxygen was used to 

generate extensive documentation from specially formatted comments within the 

code. With these aids, it should prove relatively easy for a competent C++ 

programmer to review the documentation and write a program using ADCUE with 

minimal work.  
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5.2 LIBRARY USAGE 

The ADCUE library allows the simulation of goal-oriented agents operating within 

an environment as described earlier. It is composed of the library interface and the 

simulation. To keep consistent terminology, the term simulation will be used to 

refer to the set of ADCUE components grouped together as a cohesive package. It 

also refers to the execution of the ADCUE components through time and the 

injection of events into the system. The library provides methods for loading created 

simulations, controlling the simulation, and injecting events into the system for the 

agent in the simulator. The simulation is created and stored through a series of 

files located in a directory, each one representing a component in the final 

simulation. In this manner, it is easy to create and modify the simulation data. At a 

later point in time, a Graphical User Interface may be built to further simplify the 

creation of ADCUE simulation components. To use the ADCUE library, one must 

load the directory containing the simulation files and then run the simulation, 

optionally injecting events and retrieving the current state of the simulation. The 

ADCUE library provides an agent access to a rich representation of the environment 

and the ability to use ADCUE’s built-in functionality to reason about the 

consequences of unexpected events. 

5.2.1 SYSTEM INPUTS 

As mentioned, the inputs to ADCUE are the simulation files stored in a single 

folder. The purpose is to provide an easy way to create/modify/delete ADCUE 

components.  The prefix for each file is the type of component. For instance, the file 

containing the representation for the resource Milk would be named 
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“Resource.Milk.txt.” Each component file should completely describe the 

component; as such, each component has an individualized file format  

It is important to mention the notation used to describe the file formats. Generally, 

each non-empty line in the component file specifies an attribute or some other piece 

of information about the component. Most lines begin with a label followed by a 

colon; this identifies the rest of the line as one of the pre-defined pieces of 

information. The remaining line usually has a number of pre-defined tags that must 

be supplied. For example, text enclosed between <less than and greater than signs> 

is a tag representing a description of the user-defined text that must be inserted. 

For example, when the tag <Attribute Name> is encountered, the user building the 

component insert a name for the attribute to replace the tag, less than and greater 

than signs excluded. [Square brackets] operate in a similar fashion, except they 

represent optional tags. Thus the tag [Units] can either be supplied or omitted 

depending on if the user wants to specify units for the attribute. Quotes are used to 

allow spaces and must be used where specified. For instance to use the name 

Weather Conditions for the tag “<Name>”, the text in the file should read “Weather 

Conditions”. { Curly brackets } surrounding a line represent a block: the line is a 

template that can be used several times in a row (with different values for the tag). 

For example, curly brackets are used to associate many attributes with a 

component.  

5.2.1.1 ATTRIBUTE 

Because most ADCUE components can be described with attributes, it makes sense 

to first describe how an attribute for a component is specified. A component spans 

one line; the template is as follows: 
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{ Attribute: <Type> “<Name>” <Initial Value> [“<Uni ts>”] } 
 

The four tags are: 

• <Type>: Specifies the type of attribute. Valid values include Number, Text, 

and Boolean. Number includes both integer and floating point values. Text 

may be any sequence of characters enclosed between “quotation marks”. 

Boolean types may only be true or false.  

• “<Name>”: A string representing the name of an attribute. For clarification, 

the space is considered a valid character so valid attribute names may 

include “Net Worth”, “Last Name”, etc.  

• <Initial Value>: Attributes have an initial, default value when the ADCUE 

system is first started. The value must match the type, so if the type is 

Number, values such as 3.14 or 10 are valid, but “pi”, “1”, or false are not.  

• [“<Units>”]: It is beneficial to allow the user to link units of measure to a 

particular attribute. This is optional as indicated by square brackets. Note 

that units are specified within a string; this is done so complicated units 

may be used, such as “kg  m/s.” Omitting the units results in a unitless 

attribute. It is encouraged to specify the units if it is known to clarify the 

system.  

5.2.1.2 ENVIRONMENT 

The environment file contains attributes globally affixed to the whole simulation 

and a list of agents to use in the simulation. Because only one environment may 

exist at a time, there is no need to differentiate between multiple environments. As 
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a result, the environment is not named and is stored in the file “Environment.txt.” 

The format for this file is as follows: 

{ Attribute: <Type> “<Name>” <Initial Value> [“<Uni ts>”] } 
 
{ Use: <Agent Name> } 
 
Update:  

 

From this file format specification, three blocks are used: a list of attributes, a list 

of agents to use, and an update function. The attribute template has already been 

described. The Use statement imports agents into the simulation. For example, the 

statement: 

Use: Smith 
 

Loads the agent specified in the file “Agent.Smith.txt” into the ADCUE system and 

activates it so it can begin to execute actions. Other agent files may be stored in the 

directory and loaded by the system, but they will not be used until the environment 

explicitly places them in the simulation via the Use command. The Update is a 

standalone line that starts the final block of the file. Every line following the block 

is part of an update routine that is designed to run every cycle in the simulation. 

This allows the environment to regulate itself, such as raising the temperature as 

time elapse during the day. However, this is not currently implemented; it is 

provided only as a provision for future implementations. An example environment 

component file is: 

Attribute: Number "Temperature" 75 "deg F" 
Attribute: Number "Refrigerator.Temperature" 40 "de g F" 
Attribute: Text "Forecast" "Night" 
 
Use: Agent.Smith 
 
Update: 
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Through this example, the environment is described with attributes for the 

temperature of the room, the temperature of the refrigerator, and the weather 

forecast. Initial values are specified as 75° F, 40° F, and “night”; furthermore, these 

attributes can take on new values during the execution of the simulation. The 

environment is further described by introducing the agent Smith into the system.  

5.2.1.3 AGENT 

The agent contains two blocks: objectives and attributes: 

{ Objective: <Name> }  
 
{ Attribute: <Type> “<Name>” <Initial Value> [“<Uni ts>”] } 
 

An objective block lists objectives that must be achieved in the order listed. The 

conditions that comprise the objective state are listed in the respective files named 

“Objective.<Name>.txt”. An example agent component file is “Agent.Smith.txt”: 

Objective: Not Hungry 
 
Attribute: Text "Location" "Bed" 
Attribute: Number "Weight" 150 "lbs" 
Attribute: Boolean "Hungry" true 

 

5.2.1.4 OBJECTIVE 

The objective file format has one block that lists conditions that must be true before 

the objective can be considered achieved. The conditions in the objective need not 

be satisfied in any particular order; once all conditions are true, the agent considers 

the objective accomplished successfully.  

{ Condition: <Attribute Name> <Relationship> <Attri bute Value> } 
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As mentioned in the previous chapter, a condition is the relationship between an 

attribute and its value. The attribute name must be fully qualified. This means that 

the component type must be specified as well as the name. For instance, if the 

condition attribute we want to satisfy is Smith.Hungry, the component type must be 

prefixed: Agent.Smith.Hungry. Because objectives are assigned to particular agents, 

it is desirable to have reusable objectives that can be assigned to more than one 

agent. Thus, the me component type shortcut was introduced. Instead of statically 

setting the agent type at runtime, the agent can be determined dynamically at 

runtime. For instead of limiting the objective to Agent.Smith.Hungry, the shortcut 

me.Hungry can be used. When the objective is assigned to any agent, the prefix is 

automatically added by ADCUE. In this manner, the objective can be assigned to 

Agent.Smith and Agent.Jane without modification, as seen in Figure 6.  

 

Agent.Smith.Hungry == false 

Agent.Jane.Hungry == false 

Agent.Smith 

Agent.Jane 

me.Hungry == false 

Agent.Smith 

Agent.Jane 

Objectives Agents 

Figure 6: Assigning reusable “me” objectives  

Reusable “me” Objectives 
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The relationship may be explained in the following way: Check if <Attribute Value> 

is <Relationship> to the value contained in <Attribute Name>. The relationship 

between the attribute’s value and the value specified by the user condition may be 

one of the following values (the symbols are listed in parenthesis). 

• Equals (==) 

• Not Equals (!=) 

• Less or Equal (<=) 

• Greater or Equal (>=) 

• Less than (<) 

• Greater than (>) 

An simple example of an objective is “Objective.Not Hungry.txt”: 

Condition: me.Hungry == false 
 

Notice this example makes use of the me shortcut so the Not Hungry objective can 

be assigned to multiple agents. It is important to note that in these cases, any 

agent to which this objective is assigned must have a Boolean attribute named 

Hungry.  

5.2.1.5 RESOURCE 

The resource file format is similar to the environment format seen earlier. It 

contains the initial amount for the resource, the attributes associated with the 

amount, and an update routine (currently unused). The file format is: 

Amount: <Number Value> [“<Units>”] 
 
{ Attribute: <Type> “<Name>” <Initial Value> [“<Uni ts>”] } 
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Update:  

All resources must start out with an initial numeric amount with the units 

optionally specified. A list of attributes may also be associated with the resource. 

The update routine, as is the case with the environment update routine, is executed 

once per simulation cycle and is used to allow the resource to manage itself. In the 

example of the resource Milk, the milk carton can detect its location and 

subsequently update its temperature depending on whether it is located in or out of 

the refrigerator. This update functionality is currently provided for future expansion 

of the model. An example of the resource file is: 

Amount: 1 "gal" 
 
Attribute: Boolean "Sour" false "gal" 
Attribute: Number "Temp" 40 "deg F" 
Attribute: Text "Location" "Refrigerator" 
 
Update: 
 
if (me.Location == "Refrigerator ")  
{ 
    me.Temp -= (me.Temp - Environment.Refrigerator. Temp) / 100; 
} 
if (me.Location != "Refrigerator ")  
{ 
    me.Temp += (Environment.Temp - me.Temp) / 100; 
} 
 
if (me.Temperature > 80) 
   inject Event.Sour Milk; 
 

As can be seen, self-describing components are able to update their own attributes 

and subsequently inject events such as Sour Milk if the carton was left outside the 

refrigerator too long. Notice the use of the shortcut me  is used to refer to the 

current resource, thus allowing the resource to be easily renamed at a later point in 

time..  
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5.2.1.6 ACTION 

Actions consist of preconditions and postconditions. The format is:  

{ Condition: <Attribute Name> <Relationship> <Attri bute Value> } 
 
Postconditions: 
{ <Attribute Name> <Operator> <Value> } 
 
 

Because preconditions are similar to objective conditions in that they must be 

satisfied before the action can be executed, the preconditions are listed in the same 

format as those in the objective component files. The postconditions consist of 

operations on attributes in the environment, referenced by the attribute name. The 

<Operator> can take on one of the following operators: “=”, “+=”, “-=”, “*=”, “/=”. 

Currently, only constant values are allowed. However, for increased flexibility in the 

future, values stored in attributes will be allowed. An example of an action is 

“Action.Eat Food.txt”:  

Precondition: me.Hungry == true 
Precondition: Resource.Meals.Amount > 1 
 
Postconditions: 
 
Resource.Meals.Amount -= 1 
me.Hungry = false 
 

Again, the shortcut me is used to refer to the agent executing the action. 

5.2.1.7 EVENT 

The file format for an event is the same as an action, except the event file format 

omits the preconditions. Thus, an event such as “Event.Sour Milk.txt” migh consist 

of: 

Postconditions: 
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Resource.Milk.Sour = true 
 

5.2.2 SYSTEM OUTPUT 

The output of the system is a planning graph and, optionally, the parts of the 

planning graph that are affected by events. To facilitate the clarity of the generated 

graphs and the consequences of events on a plan, ADCUE uses an external tool to 

generate graphical representations of the graphs and the effects of events on 

actions in the plan. This is described in more detail in the testing section, as it is 

used to validate ADCUE’s operation.  

5.3 ADCUE ARCHITECTURE 

The ADCUE system consists of several different packages, each with a separate 

functionality. The modules are divided into three separate levels as seen in Figure 

7. The key package is the ADCUE Core, which contains the functionality to 

load/manipulate/reason with the ADCUE components. This level is referred to as 

the model level as it contains the implementation of the ADCUE approach. At the 

scenario level, any number of scenario packages can be developed which use 

ADCUE to implement situations in which agents automatically reason about the 

consequences of events. Two supporting packages, the Zebulon base library and the 

Google hashmap are used extensively. The Zebulon base library is a library 

developed at the Robotics Laboratory at UCF to provide high-level cross-platform 

commonly used functionality for C++ programs. It includes classes to work with 

arrays, files, and parsing. The Google hashmap, developed by Google, is widely 
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regarded as an extremely fast and efficient hash table, which is used to 

store/retrieve ADCUE components by names. 

 

The remainder of this implementation chapter focuses on the model level. The 

ADCUE Core is composed of a diverse set of classes. The first set of classes handles 

the representation of the ADCUE components. These classes include: Attribute, 

ADCUEComponent, Environment, Agent, Action, State, Condition, Routine, Block, 

and State. Each class is examined in detail in upcoming sections. The relationship 

between these classes can be seen in Figure 8. Notice all components derive from 

ADCUEComponent, which has an array of Attributes. The other set of classes are 

for generating/analyzing plans and is discussed later.  

Scenario 1 

ADCUE  

Core  

Scenario 2 

Zebulon 

Base 

Google 

Hashmap 

Simulation 

Level 

Model 

Level 

Supporting 

Level 

Figure 7: High level ADCUE package structure 
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5.3.1 ATTRIBUTE 

The Attribute class (see class diagram in Figure 9) is the core of the ADCUE 

system. Nearly all ADCUE components can be described at least partially through a 

set of attributes. An attribute can hold textual, numeric, or a Boolean value as 

specified by the AttributeType enumeration. The Attribute class stores two sets of 

values: the initial value and the current value. The initial value is the value the 

attribute was first assigned and is stored because of its potential usefulness later in 

the simulation. The current value tracks how the attribute changes over time. The 

actual values are stored in an AttributeValue union that stores a text string, 

number, or Boolean value.  

Figure 8: ADCUE representational class diagram 
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It is also possible to store units 

with an Attribute. Units are 

represented using strings, thus it 

can store any unit of measure. 

Additionally, any custom 

information can be associated 

with the attribute.  

5.3.1.1 ADCUECOMPONENT 

Since all ADCUE components 

have a name (except the 

environment) and a list of 

attributes, it is beneficial to 

encapsulate this functionality 

once within an abstract base 

class. The abstract base class 

created for this purpose is the 

ADCUEComponent. This class 

takes care of the tedious 

management of storing, adding, 

and modifying attributes in addition to storing and retrieving the component name. 

A class diagram of this base class can be seen in Figure 10. 

asdf 

Figure 9: Attribute class diagram 
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5.3.2 ENVIRONMENT 

The Environment class (see Figure 11 for class diagram) is the class that has the 

responsibility of managing all other components in the ADCUE system. It handles 

loading the ADCUE components from file, linking and storing all components, 

retrieving them as necessary, and many other miscellaneous functions to control 

the environment. In fact, the Environment class serves as the point of contact for 

all other components in the system as it is the container in which all components 

are stored. The environment also calculates whether objective states have been 

reached yet so the agent knows when to finish the simulation.  

Figure 10: ADCUEComponent class diagram 
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Figure 11:  Environment class diagram 
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5.3.3 AGENT 

An Agent class (see Figure 12 for class diagram) is described through a set of 

attributes and available actions to execute. It operates within the environment and 

can produce/consume/synthesize resources. The Agent class does not select which 

action to execute, this processes is done through the Environment class. However, 

the Agent class does allow access to the action the agent is currently executing.  

 
Figure 12: Agent class diagram 
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5.3.4 ACTION 

The Action class (see class diagram in Figure 13) is an executable black box that 

runs only under specific preconditions and changes the world through a set of 

postconditions. For more efficient processing and to organize the actions in a logical 

fashion, actions are grouped hierarchically by the ActionLevel enumeration. At the 

top level, a High level can have a number of Low level actions. The High level action 

can be thought of the abstract “what needs to happen” while the Low level actions 

can be thought of as “how to accomplish what is needed.”  

 
Figure 13: Action class diagram 
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5.3.5 ROUTINE 

 

Many of the ADCUE components, such as Action, Event, Environment, Resource, 

etc, have the ability to change the environment. This is accomplished through 

postconditions stored in a Routine class (see Figure 14 for the class diagram). A 

routine is divided into a number of Block classes, each of which contains one or 

Statement classes. A statement is the lowest level and is executed as a single 

logical function. The purpose of a block is to allow conditional execution of groups 

Figure 14: Routine, Block, Statement, Event, & Resource class diagram 
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of statements. For example, a group of statements may need to be executed only if 

the temperature dips below freezing.   

5.3.6 EVENT & RESOURCE 

Both the Event and Resource classes inherit from Routine and 

ADCUEComponent, as can be seen 

in Figure 14. From the 

ADCUEComponent, the event or 

resource inherits a name and 

attributes from the Routine class, an 

event inherits functionality to define 

postconditions and execute them 

while the resource inherits 

postconditions to update itself on a 

timed interval.  

5.3.7 STATE & CONDITION 

The State class defines a set of 

conditions that must be true to be in 

the state. Each condition is stored in 

a Condition class that links an 

attribute in the environment to a 

value. Once all conditions associated 

with a state are evaluated to be true, 
Figure 15: State and Condition class 

diagram 
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the state is said to be active. States represent objectives and allow the agent to 

determine when it has reached the objective state. The class diagram can be seen in 

Figure 15. 

5.4 ADCUE ALGORITHM OPERATION 

The ADCUE algorithm that determines the consequences of events is the 

combination of the intersection operator and the technique of slicing. Remember 

that the intersection operator can determine whether or not an action is affected by 

an event. However, this operation only checks one action (or step) in the plan. 

Slicing allows us to traverse the planning graph (forwards and backwards) and use 

the intersection operator on relevant nodes, thus examining upstream and 

downstream effects. Several classes aid with this process: Planner, PlanGraph, and 

PlanNode. The relationship and class diagrams for these classes can be seen in 

Figure 16.  
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5.4.1 PLANNINGGRAPH & PLANNODE 

A plan in ADCUE is stored in the PlanningGraph class as a bi-directional directed 

graph. As is the case with Contextual Graphs, the planning graph contains one 

entry node referred to as the initial state and a final state representing the objective 

Figure 16: Planner/PlanGraph/PlanNode class diagram 



83 
 

state. All other nodes in the planning graph are of class PlanNode and represent 

ordered steps of the plan. Each PlanNode represents an action with preconditions 

and postconditions. Any path from the initial state to the objective state should 

include all the steps necessary to bring about the agent’s goal. While execution 

flows forward, the bi-directional links allow the graph to be traversed either forward 

or backwards for analysis purposes. 

 

It is important to note that the PlanningGraph can contain many different paths 

and action steps to achieve the objective state. It is possible that some paths and 

actions may never be selected because a resource or condition is lacking. However, 

these paths and actions must be included in case the resource or condition 

becomes available at a later time.  

Action 1 

Action 3 

Action 2 

Initial State 

Objective State 

Figure 17: PlanningGraph with three PlanNodes 
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5.4.2 PLANNER 

The Planner class handles generating plans and analyzing plans with respect to an 

event. Interfacing to the environment, the planner uses the actions from the agent 

performing the planning to generate a plan that achieves the agent’s objectives.  

Currently, the planner supports only generating simple plans. Larger, more 

complex plans with multiple objectives are beyond the capabilities of the planner 

and must be programmatically generated using the PlanningGraph class API.  

5.4.3 ADCUE ANALYSIS ALGORITHM 

The algorithm for plan analysis that determines the consequences of events on a 

plan is handled through the previous three classes. When an event is introduced 

into the plan, the technique of slicing used to apply the intersection operator to 

nodes in the planning graph. This corresponds to testing each step in the plan to 

see how affected it is by the event. Based on the results of applying these two 

techniques to all the paths in the plan, potentially affected actions are flagged with 

the attribute set returned by the intersection operator. The attribute sets contain 

which attributes the event affects and are used to determine the exact 

consequences of the event.  

5.5 SUMMARY 

The chapter concluded with an overview of topics such as the environment, high 

level design, and usage of the ADCUE library. The library will serve as the backend 

to all systems utilizing the ADCUE model, including the test cases presented in the 

next chapter. 
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CHAPTER 6: TESTING 

By testing ADCUE with several test cases, a measure of how well ADCUE detects 

and determines the consequences of unexpected events can be obtained. This 

chapter describes the method used to design, set up, and run the tests. This also 

provides a metric with which the test results can be evaluated. Two separate testing 

scenarios, each consisting of several tests, are subsequently investigated and the 

results are concisely overviewed. 

6.1 METHODOLOGY 

The test procedure for ADCUE is specified as the evaluation of the ADCUE model 

operating under different scenarios. Typical use-cases where a user or agent is 

interested in the consequences of unexpected events are developed by creating a 

scenario through the various ADCUE components that comprise the simulation. A 

set of events are also specified for each scenario so they can be injected into the 

system. The injection of an event into the scenario is treated as a test of how well 

the system first detects and secondly determines the consequences of the event. For 

the tests to be unbiased, the expected outcome is documented before the tests are 

run and the actual results are subsequently compared. The tests performed in this 

chapter range from easy to difficult so as to accurately determine at what point 

ADCUE begins to fail.  
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6.1.1 GRAPHICAL VISUALIZATION 

To aid the testing phase, ADCUE utilizes the AT&T GraphViz programs to generate 

professional-looking directed graphs from formatted text files. Through this 

visualization, it is much easier to see the planning graph and the steps of the plan 

affected by events. Since ADCUE automatically uses Graphviz to produce graphs 

from the internal testing procedures, these graphs can be considered part of the 

result of a test. The legend for these graphs is: 

• Boxes represent states, typically either the initial or objective state. Key 

conditions that define the state are listed inside the box. 

• Ovals represent action nodes, or individual steps in the plan.  

• Arrows represent the flow of execution from one action to another, 

indicating the passage of time. 

• Diamonds represent events injected into the system. 

• Filled ovals represent actions that are affected by events. 

• Dashed arrows represent connect diamonds with filled ovals, indicating an 

event is affecting an action. 

6.2 TESTING SCENARIOS 

Two testing scenarios were developed: a simple and complex one. The simple 

scenario is the breakfast scenario used earlier and is used to validate the core 

functionality of the model. The complex one represents a more dynamic 

environment and is used to stress ADCUE, possibly to the point of failure. Both 
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scenarios are developed by specifying each ADCUE component in a file and storing 

the file in a directory with the rest of the simulation components. 

6.3 BREAKFAST SCENARIO 

By now, the breakfast scenario used throughout the thesis should be familiar to the 

reader, making it a good choice for a test scenario. All the expected outcomes to the 

events mentioned have previously been predicted as an earlier example. To recap, 

the graphical relationship between the ADCUE components can be seen in Figure 1 

in the previous chapter and the events were described in section 4.8.3. 

6.3.1 SIMULATION DESCRIPTION 

This section contains a listing consisting of the simulation files for the breakfast 

simulation. Each component name is bolded and followed by a horizontal rule and 

the specification of the individual component.  

Action.Clean House 

 
Precondition: me.Awake == true  
Precondition: Resource.House.Dirty == true  
 
Postconditions:  
 
Resource.House.Dirty = false 
 
Action.Cook Pancakes 

 
Precondition: Resource.Pancake 
Mix.Amount >= 1  
Precondition: Resource.Milk.Sour != false  
Precondition: Resource.Milk.Amount >= 
0.0625  
 
Postconditions:  
 
Resource.Pancake Mix.Amount -= 1  
Resource.Milk.Amount -= 0.0625  
Resource.Meals.Amount += 1 

 
Action.Drive 

 
Precondition: Resource.Car.Available == true  
Precondition: Resource.Car.Gas > 1  
 
Postconditions:  
 
me.Location = "McDonalds"  
Resource.Car.Gas -= 0.25 
 
Action.Eat Breakfast 

 
Precondition: me.Awake == true  
Precondition: me.Hungry == true  
 
Use: Cook Pancakes  
Use: Drive  
Use: Order McMuffin  
Use: Pour Milk And Cereal 
Use: Eat Food  
 
Postconditions:  
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me.Hungry = false 
 
Action.Eat Food 

 
Precondition: me.Hungry == true  
Precondition: Resource.Meals > 1  
 
Postconditions:  
 
Resource.Meals.Amount -= 1  
me.Hungry = false 
 
Action.Get Out Of Bed 

 
Precondition: me.Location == "Bed"  
 
Postconditions:  
 
me.Location = "Bedroom"  
me.Awake = true 
 
Action.Order McMuffin 

 
Precondition: me.Location == "McDonalds"  
Precondition: Resource.Money.Amount >= 
3.29  
 
Postconditions:  
 
Resource.Money.Amount -= 3.29  
Resource.Meals.Amount += 1 
 
Action.Pour Milk And Cereal 

 
Precondition: Resource.Cereal.Amount >= 
0.125  
Precondition: Resource.Milk.Sour != false  
Precondition: Resource.Milk.Amount >= 
0.0625  
 
Postconditions:  
 
Resource.Cereal.Amount -= 0.124  
Resource.Milk.Amount -= 0.0625  
Resource.Meals.Amount += 1 
 
Agent.Smith 

 
Objective: Not Hungry  
Objective: House Clean  
 
Attribute: Text "Location" "Bed"  
Attribute: Number "Weight" 150 "lbs"  
Attribute: Boolean "Hungry" true 
 
Environment 

 
Attribute: Number "Temperature" 75 "deg F"  
Attribute: Number 
"Refrigerator.Temperature" 40 "deg F"  

Attribute: Text "Forecast" "Night"  
 
Use: Agent.Smith  
 
Event.Free McMuffin 

 
Postconditions:  
 
Resource.Meals.Amount += 1 
 
Event.Sour Milk 

 
Postconditions:  
 
Resource.Milk.Sour = true 
 
Event.Sunny Forecast 

 
Postconditions:  
 
Environment.Forecast = "Sunny" 
 
Objective.Cool Down 

 
Condition: Environment.Temperature < 75  
 
Objective.Get Up 

 
Condition: me.Location != "Bed" 
 
Objective.House Clean 

 
Condition: Resource.House.Dirty == false  
 
Objective.Not Hungry 

 
Condition: me.Hungry == false 
 
Objective.Sleep 

 
Condition: me.Location == "Bed"  
 
Resource.Car 

 
Amount: 1  
 
Attribute: Boolean "Available" false  
Attribute: Number "Gas" 12 "gal" 
 
Resource.Cereal 

 
Amount: 2 "bags" 
 
Resource.House 

 
Amount: 1  
 
Attribute: Boolean "Dirty" true  
 
Resource.Meals 
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Amount: 0 "meals"  
 
Resource.Milk 

 
Amount: 1 "gal"  
 
Attribute: Boolean "Sour" false "gal"  
Attribute: Number "Temperature" 40 "deg F"  
Attribute: Text "Location" "Refrigerator"  

 
Resource.Money 

 
Amount: 50 "dollars" 
 
Resource.Pancake Mix 

 
Amount: 5 "packages"

 

6.3.2   TESTS 

Three events were tested with 

the breakfast scenario: Sunny 

Forecast, Sour Milk, Free 

McMuffin®. All three were 

tested with the plan shown in 

Figure 18. To recap, the 

initial state is Agent Smith 

has woken up in the morning 

and is in bed feeling hungry. 

The objective is for Agent 

Smith to no longer be hungry. 

Three different paths exist for 

the agent to choose, each one 

representing a potential plan. 

6.3.2.1 TEST 1: SUNNY FORECAST 

The first test is to inject the event Sunny Forecast into the plan and observe the 

results. The postconditions of this event consist of setting the attribute 

Environment.Forecast to “Sunny”. Because none of the actions in the plan have 

Figure 18: Breakfast scenario plan 



 

precondition dependencies 

weather, the expected outcome 

whatsoever. 

Figure 19: Breakfast scenario with Sunny Forecast event

As seen in Figure 19, the event 

any actions shaded, an indication they have been affected by an event.

expected, the unexpected event 

6.3.2.2 TEST 2: SOUR M

The second test is to inject the event 

results. The postconditions of this event consist of setting the attribute 

“true”. It is expected that both actions 

90 

precondition dependencies on the forecast and none of the actions affect the 

weather, the expected outcome is for the event to have no consequences 

: Breakfast scenario with Sunny Forecast event

, the event Sunny Forecast is not linked to any actions, nor are 

any actions shaded, an indication they have been affected by an event.

expected, the unexpected event Sunny Forecast has no consequences on the plan. 

MILK 

test is to inject the event Sour Milk into the plan and observe the 

results. The postconditions of this event consist of setting the attribute 

It is expected that both actions Pour Milk And Cereal and Cook Pancakes

ions affect the 

the event to have no consequences 

 

: Breakfast scenario with Sunny Forecast event 

s not linked to any actions, nor are 

any actions shaded, an indication they have been affected by an event. Thus, as 

has no consequences on the plan.  

into the plan and observe the 

results. The postconditions of this event consist of setting the attribute Milk.Sour to 

Cook Pancakes will 



 

be affected since they both have precondition

milk is good. 

Figure 20

As seen in Figure 20, ADCUE correctly detected that Sour Milk affects the predicted 

actions, leaving only one path open for the plan to succeed. 

hyper-realtime and propagating the attribute values through time

determine that the event disables the ability to execute either 

Thus, agent Smith can conclude that the consequences of the unexpected event 

Sour Milk prevents him from making his own breakfast; he is forced to go to 

McDonalds for a McMuffin®
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since they both have preconditions that allow them to execute only if the 

20: Breakfast scenario with Sour Milk event 

ADCUE correctly detected that Sour Milk affects the predicted 

ing only one path open for the plan to succeed. By executing actions in 

and propagating the attribute values through time, the agent can 

event disables the ability to execute either of the two actions

n conclude that the consequences of the unexpected event 

prevents him from making his own breakfast; he is forced to go to 

McMuffin®.  

s that allow them to execute only if the 

 

 

ADCUE correctly detected that Sour Milk affects the predicted 

By executing actions in 

, the agent can 

of the two actions. 

n conclude that the consequences of the unexpected event 

prevents him from making his own breakfast; he is forced to go to 



 

6.3.2.3 TEST 3: FREE M

The second test is to inject the event 

results. This event represents 

“buy one, get one free” deal for McMuffins

consist of incrementing 

that the action Order McMuffin®

will now be getting two meals

Figure 21: 

As seen in Figure 21, the results 

and Eat Food actions are shown as affected, the two additional 

And Cereal and Cook Pancakes 

Why is this? Upon further in
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MCMUFFIN® 

The second test is to inject the event Free McMuffin® into the plan and 

This event represents Agent.Smith arriving at McDonalds and discovering a 

“buy one, get one free” deal for McMuffins®. The postconditions of this event 

 the value of the attribute Meals.Amount by 1

McMuffin® and Eat Food will be affected because 

be getting two meals instead of one. 

: Breakfast scenario with Free McMuffin® event

, the results were not as expected. While both Order 

actions are shown as affected, the two additional actions 

Cook Pancakes are also shown as being affected by Free 

Why is this? Upon further inspection, it appears that the specification of the plan 

into the plan and observe the 

arriving at McDonalds and discovering a 

The postconditions of this event 

by 1. It is expected 

because agent Smith 

 

event 

Order McMuffin® 

actions Pour Milk 

Free McMuffin®. 

spection, it appears that the specification of the plan 
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components have a logic mistake. While it is was desired that Agent.Smith only 

receive a free McMuffin® through the “buy one, get one free” deal at McDonalds, the 

postcondition “Meals.Amount += 1” does not do that. Instead, after thinking about 

it, this postcondition of event Free McMuffin® increases the attribute Meals.Amount 

regardless of whether the agent visits McDonalds. In order to rectify this mistake 

and more accurate represent the “buy one, get one free” event, the event should be 

injected into the system only for the paths where agent Smith visits McDonalds. 

Viewed through this new perspective, it makes sense that the other two actions 

were affected; the event Free McMuffin® is generating an additional meal no matter 

what. This reveals an interesting side effect of ADCUE: it also makes errors in 

specifying the preconditions clearly evident. Thus, while the results were not as 

expected, the error ultimately lay in human error specifying the preconditions 

rather than ADCUE. In this test, ADCUE performed as it should have.  

6.4 UAV SCENARIO 

While the breakfast scenario tested and verified that the core functionality of 

ADCUE was indeed working as originally envisioned, a more challenging scenario 

was designed to test the limits of the system and see how ADCUE could handle 

something more than a toy problem. The scenario chosen was that of the Predator 

Unmanned Aerial Vehicle (UAV) with a surveillance/reconnaissance mission. The 

purpose of this scenario is to experimentally verify the validity of the developed 

model in situations closer to the real world. Additionally, the selection of the UAV 

scenario is beneficial because of its relative simplicity, clear objectives, and current 

relevancy.  
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6.4.1 PREDATOR UAV 

Unmanned Aerial Vehicles (UAVs) have a wide variety of uses within military 

operations. UAVs can be considered a long-range airplane controlled remotely by a 

base station. Among the several UAVs publicly used by the US military, the MQ-1 

Predator UAV has achieved notoriety through its involvement in the Balkans [35], 

Afghanistan [36], and Iraq [37] as an armed reconnaissance spy plane. Created by 

the General Atomics Aeronautical Systems in 1994 [38], it is often referred to as a 

MALE (Medium-Altitude, Long-Endurance) UAV. Although originally meant to 

perform only surveillance tasks, in 2002, the Predator was authorized to carry out 

armed reconnaissance as well [38]. This makes it an ideal platform to test in a 

simulation.  

6.4.1.1 PHYSICAL SPECIFICATIONS 

All Predator UAV specifications have been converted to SI units for ease of 

calculation and simulation. Because of the nature of the Predator’s missions and 

involvement in various military ventures, it can be difficult to obtain exact figures 

for the values of the specifications. This problem is further exacerbated by the 

continued evolvement of the Predator UAV over the past decade. However, while the 

purpose of the UAV scenario is not to perfectly model the airplane in questions, a 

best effort has been put forth to ensure the accuracy of the figures listed here. 

Sources of information include [39], [40], [41], [42], [43]. 

Table 4: Predator UAV Specifications 

Attribute Value Attribute Value 

Length 8.22 m Wingspan 14.8 m 
Height 2.1 m Fuel 378.54 liters 
Weight (empty) 512 kg Normal altitude 4572 m 
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Attribute Value Attribute Value 

Weight (max) 1020 kg Loiter time at range 24 hours 
Velocity (stall) 27.78 m/s Payload 205 kg 
Velocity (cruise) 37.55 m/s Range 730.64 km 
Velocity (max) 60.35 m/s Ceiling 7620 m 

6.4.1.2 OPERATIONAL & WEATHER LIMITATIONS 

The Predator does not tolerate difficult weather conditions very well [43]. During 

take-off, cross winds should not exceed 7.72 m/s and headwinds should be below 

15.m/s. Additionally, the Predator cannot fly in heavy rain or icy conditions. It can 

handle only light turbulence. In terms of take-off and landing operational 

requirements, the Predator requires a minimum runway length of 22.86 m by 1524 

m.  

6.4.1.3 EQUIPMENT/RESOURCES 

The Predator carries a broad range of equipment in several different categories: 

surveillance, emergency, and military. In addition to standard equipment, the 

Predator can carry a payload of 205 kg to include any custom equipment required 

by the mission.  

• Emergency: Because the Predator is flown remotely through a data link 

(either line of sight or satellite), the Predator has a feature that will fly it 

home to the base station in the event of a data link loss. In the event of an 

emergency, the Predator can be optionally configured to carry and use a 

parachute [43].  

• Surveillance: As surveillance and reconnaissance is the primary objective of 

the Predator, it is well equipped to handle many different types of 

surveillance activities. The nose of the plane carries a color video camera 
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used mainly for flight control. For surveillance purposes, the Predator 

carries a variable aperture TV video camera and a variable aperture infrared 

video camera for night-time use. The Predator is also outfitted with synthetic 

aperture still-frame radar detection equipment.  

• Military: On the defensive side, the Predator is built with a composite hull, 

which reduces its radar signature. Furthermore, the Predator flies much 

slower than typical military aircraft, so enemy radar detection equipment 

may fail to detect it as a threat [44]. Offensively, the Predator is armed with 

two AMG-114 Hellfire missiles that can attain speeds of Mach 5 to strike and 

kill an armored target within a range of 8 km [45]. 

6.4.1.4 MILITARY THREATS 

In addition to a poor tolerance to harsh weather, the Predator is susceptible to 

several military threats. The most pressing threat comes from enemy aircraft and 

Surface-to-Air missiles (SAMs). Fighter planes, such as the MiG 25, have engaged 

and successfully shot down Predators. SAMs (Surface-to-Air missiles) have also 

destroyed Predators. In addition to vehicle-mounted surface-to-air missiles such as 

the PAC-2 Patriot missile, man portable missiles such as the FIM 92 B/C Stinger 

can threaten a lower flying Predator. The Patriot missile typically has a range of 70 

km and can reach an altitude of 24 km [46], while the smaller, shoulder mounted 

Stinger has a range of 8 km and can only reach 3.8 km [47]. Given that the ceiling 

of a Predator is higher than the vertical range of a Stinger missile, the UAV is only 

susceptible to Stinger missile attacks when flying low.  
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6.4.2 MISSIONS & OBJECTIVES 

The Predator’s “primary mission is interdiction and conducting armed 

reconnaissance against critical, perishable targets” [40]. While reconnaissance and 

surveillance constitute the largest part of its activities, the Predator can perform a 

variety of roles [39]. These additional roles include target acquisition, target 

designation, communications, battle-damage assessment, communications & 

electronics intelligence, jamming, chemical and biological warfare detection, search 

and rescue, and providing dispensable aircraft. Each of these roles achieves a 

different objective and will be examined in more detail.  

6.4.2.1 RECONNAISSANCE 

Reconnaissance usually incorporates exploratory investigations to gather 

information about a resource or enemy. It can gather a wide range of information 

about an area, including information about weather, geography, enemy locations, 

and troop movements. These missions typically cover a large area of interest at 

cruise speeds, scouting for interesting information. 

6.4.2.2 SURVEILLANCE 

Surveillance constitutes a longer term version of reconnaissance and involves 

observing a single target for a long time. Typically surveillance takes place after 

reconnaissance when the points of particular interest have been discovered and 

require watching for further information and analysis. Examples of surveillance 

include watching a building, troop, or location. These missions cover a small area 

and typically fly slow to avoid detection.   
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6.4.2.3 TARGET ACQUISITION & DESIGNATION & ATTACK 

During military operations, destroying key enemy equipment and personnel is 

critical. A Predator is an ideal way to search and find these targets without risking 

a pilot’s life. The mission can involve high cruise speeds when locating targets, or 

alternatively loitering in specific areas if intelligence indicates future enemy 

movement. Once a target is found, the Predator can report target acquisition, use a 

laser or other designator to guide another vehicle’s munitions against the target, or 

use one of the Hellfire missiles the Predator carries to attempt to destroy the target.  

6.4.2.4 BATTLE-DAMAGE ASSESSMENT  

After attempted target destruction by either the UAV or another military unit, the 

Predator can provide real-time assessment of the damage inflicted upon the target. 

Such a mission requires the Predator to loiter over the targeted area, using its 

sensors to analyze the target. This is most important when deciding whether a 

follow up round is necessary after using long range weapons. 

6.4.2.5 COMMUNICATIONS RELAY & JAMMING 

In a rapidly advancing military operation, the Predator can use the 205 kg of 

payload to carry communications relay equipment that enable friendly units to 

communicate with each other in the absence of usable local or global 

communication networks. In contrast to providing a communications relay for 

friendly units, the Predator can be equipped with communication jamming 

equipment to interfere with enemy communication. Both roles require a high 

endurance and low speed vehicle, a role the Predator fits into easily.  
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6.4.2.6 BIOLOGICAL AND CHEMICAL WARFARE DETECTION 

When suspected biological or chemical weapons have been used and it is dangerous 

to send manned teams for investigation, the Predator can carry sensitive equipment 

to determine if traces of biological or chemical weapons are evident. This eliminates 

the risk that the lingering effects of these weapons might pose to manned 

investigations. The mission parameters would be very similar to that of 

reconnaissance, with the exception of using advanced equipment for the detection 

of weapon remains.  

6.4.2.7 SEARCH AND RESCUE & PERSON IDENTIFICATION 

The infrared camera that the Predator uses is sensitive enough to detect and 

distinguish a human heat source from 3,048 m [48]. This makes the Predator ideal 

for search and rescue situations where conditions are nonconductive to ground 

search and rescue. In these situations, the Predator would most likely perform 

rapid sweeps between cruise and max speed to most quickly locate the person.  

6.4.2.8 PROVIDING DISPENSABLE AIRCRAFT 

Although a complete Predator system costs $40 million in 1997 dollars, much of 

the cost, both monetary and in terms of human life, remains far away in the ground 

station. Thus, Predators are ideally suited to high risk ventures where the plane 

may be destroyed. For example, during operations in Iraq, Predators stripped of 

sensors were flown into deliberately dangerous areas to test enemy anti-aircraft 

capabilities. Other uses consist of provoking the enemy to scramble fighters in the 

face of an unknown aerial threat. Such missions require fine control and UAV 

dashes with maximum velocity. [37] 
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6.4.3 SCENARIO LOCATION 

For an accurate simulation, a location is a necessary component. A location must 

meet several requirements. First, airports or airfields must be present for the UAV 

to launch. Secondly, the location must be large and diverse enough to provide a 

realistic simulation. Because a Predator can fly approximately 805 km for 

surveillance purposes, the location should have an area of comparable size. The 

advantage to a diverse location is that it more accurately models situations a UAV 

operates in the real-world. For example, diversity should include topology, terrain, 

populations, population, and military bases or movements. Finally, the location 

must be realistic within the scope of UAV usage, i.e. choosing a location in 

Antarctica does not utilize the typical functionality of a UAV particularly well.  

After careful consideration, the country of Afghanistan was chosen as the scenario 

location. Afghanistan satisfies the requirements of UAV usage, diversity, airfields, 

and location size. Furthermore, the US military has used the Predator extensively in 

Afghanistan. While Predator missions have not been released to the general public, 

it is beneficial to know that the UAV was simulated in locations that reflect real 

operations. Afghanistan also offers much diversity in terms of both terrain and 

population and has both urban and rural areas, including some in mountainous 

regions that the UAV will be unable to fly over. Finally, because of the guerilla 

warfare that often took place in the mountains and wilderness, the location is 

ideally suited for the type of work the Predator does best: locate, observe, and take 

action on enemy movements.  
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6.4.3.1 MAP & POINTS OF INTEREST 

A Google Earth satellite map of Afghanistan can be seen in Figure 22. During 

Operation Enduring Freedom in Afghanistan, one of the heavily used U.S. airbases 

was located in Karshi-Khanabad, Uzbekistan [49]. Named K2, this airbase was only 

a short flight away from Afghanistan and could reach Kabul easily. The map shown 

in Figure 22 shows the launch point for the Predator UAV (Karshi) and the 

approximate range of the Predator. The capital of Afghanistan, Kabul, is located 

only 575 km away using the simplifying assumptions of a flat world and as-the-

crow-flies navigation.  

 
Figure 22: Afghanistan map with Predator launch point and range © Google 
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6.4.4 SCENARIO  

Now that the Predator UAV has been described in detail and a location has been 

selected, it is possible to translate general knowledge about UAV missions into the 

ADCUE model of resources, objectives, actions, events, etc. By first describing the 

real-world capabilities as was done in previous sections, a solid knowledge base has 

been laid such that the scenario can be framed realistically in terms of ADCUE.  

6.4.4.1 OBJECTIVES 

The objective for the Predator UAV is 

to launch from the K2 airbase, 

conduct reconnaissance of the capital 

city Kabul or Herat by taking some 

video, and return unharmed to the 

airbase. The events being injected 

into the system are gusty conditions 

with a headwind and poor visibility 

conditions at Herat.  

6.4.5 SCENARIO DESCRIPTION 

This section contains the base plan 

for the UAV scenario and a listing 

consisting of the simulation files for 

the breakfast simulation. Each 

component name is bolded and followed by a horizontal rule and the specification 

of the individual component. 

Figure 23: UAV base plan 
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6.4.5.1 BASE PLAN 

The base plan seen in Figure 23 calls for the UAV to take off, fly to either Kabul or 

Herat for reconnaissance, take some video, fly back home to K2, and land safely.  

6.4.5.2 SCENARIO COMPONENTS 

Action.Fly Home 

 
Precondition: me.Alive == true  
Precondition: me.Altitude > 0  
Precondition: me.Velocity > 0  
 
Postconditions:  
 
me.Fuel -= 10  
me.Location = "K2 Airbase" 
 
Action.Fly to Herat 

 
Precondition: me.Alive == true  
Precondition: me.Altitude > 0  
Precondition: me.Velocity > 0  
 
Postconditions:  
 
me.Fuel -= 10  
me.Location = "Herat" 
 
Action.Fly to Kabul 

 
Precondition: me.Alive == true  
Precondition: me.Altitude > 0  
Precondition: me.Velocity > 0  
 
Postconditions:  
 
me.Fuel -= 10  
me.Location = "Kabul" 
 
Action.Land 

 
Precondition: me.Altitude > 0  
Precondition: me.Velocity > 0  
 
Postconditions:  
 
me.Fuel -= 10  
me.Velocity = 0  
me.Location = "K2 Airbase"  
me.Altitude = 0 
 
Action.Take Off 

 

Precondition: me.Alive == true  
Precondition: me.Altitude == 0  
Precondition: Environment.Headwind < 
20.43  
 
Postconditions:  
 
me.Fuel -= 10  
me.Velocity = 37.75  
me.Altitude = 4572 
 
Action.Take Video of Herat 

 
Precondition: me.Location == "Herat"  
Precondition: Resource.Camera.Amount >= 
1  
Precondition: Resource.Camera.Working == 
true  
Precondition: Environment.Herat Visibility > 
5  
 
Postconditions:  
 
Resource.Camera.Taken = true 
 
Action.Take Video of Kabul 

 
Precondition: me.Location == "Kabul"  
Precondition: Resource.Camera.Amount >= 
1  
Precondition: Resource.Camera.Working == 
true  
Precondition: Environment.Kabul Visibility > 
5  
 
Postconditions:  
 
Resource.Camera.Taken = true 
 
Agent.Predator 

 
Objective: Spy Kabul  
 
Attribute: Boolean "Alive" true  
Attribute: Text "Location" "K2 Airbase"  
 
Attribute: Number "Length" 8.22 "m"  
Attribute: Number "Height" 2.1 "m"  
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Attribute: Number "Empty Weight" 512 "kg"  
Attribute: Number "Max Weight" 1020 "kg"  
Attribute: Number "Wingspan" 14.8 "m"  
Attribute: Number "Fuel" 378.54 "l"  
Attribute: Number "Normal Altitude" 4572 
"m"  
Attribute: Number "Loiter Time" 24 "hr"  
Attribute: Number "Stall Velocity" 27.78 
"m/s"  
Attribute: Number "Cruise Velocity" 37.75 
"m/s"  
Attribute: Number "Max Velocity" 60.35 
"m/s"  
Attribute: Number "Payload" 205 "kg"  
Attribute: Number "Range" 730.64 "km"  
Attribute: Number "Ceiling" 7620 "m"  
Attribute: Number "Max Headwind" 15.43 
"m/s"  
Attribute: Number "Max Crosswind" 7.72 
"m/s"  
Attribute: Number "Min Runway Length" 
1524 "m"  
Attribute: Number "Min Runway Width" 
22.86 "m"  
 
 
 
Environment 

 
Attribute: Number "Kabul Visibility" 5 "km"  
Attribute: Number "Herat Visibility" 5 "km"  
Attribute: Number "Headwind" 0 "m/s"  
Attribute: Number "Crosswind" 0 "m/s"  
Attribute: Boolean "Turbulence" false  
Attribute: Boolean "Icy" false  
Attribute: Boolean "Video Taken" false  
 
Use: Agent.Predator  
 
Update:  
 
 
Event.Headwind 

 
Postconditions:  
 
Environment.Headwind = 18 
 
Event.Poor Visibility 

 

Postconditions:  
 
Environment.Herat Visibility = 0.5 
 
Event.Storm 

 
 
 
Objective.Spy Herat 

 
Condition: me.Location == "K2 Airbase"  
Condition: Environment.Video Taken == true  
 
 
Objective.Spy Kabul 

 
Condition: me.Location == "K2 Airbase"  
Condition: Environment.Video Taken == true  
 
 
Resource.Hellfire Missles 

 
Amount: 2 "missiles"  
 
Update:  
 
 
Resource.Video Camera 

 
Amount: 1 "camera"  
 
Attribute: Boolean "Working" true  
 
Update:  
 
 
Resource.Video of Herat 

 
Amount: 0 "pics"  
 
Attribute: Boolean "Taken" false  
Attribute: Text "Location" "Herat" "city" 
 
Resource.Video of Kabul 

 
Amount: 0 "pics"  
 
Attribute: Boolean "Taken" false  
Attribute: Text "Location" "Kabul" "city" 

6.4.6 TESTS 

Two tests are to be performed. The first is to determine how the events Headwind 

and Poor Visibility affect the plan.  
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6.4.6.1 TEST 1: HEADWIND 

The first test consists of injecting the Headwind event into the simulation. Because 

the Headwind event sets the attribute Environment.Headwind to a value greater 

than the Predator can handle, it is expected that the event will affect the Take Off 

event. The results of simulation using ADCUE seen in Figure 24 shows that it 

indeed does. The consequences in this case is complete failure of the mission 

because the UAV is unable to take off the runway.  

 

 

Figure 24: UAV scenario with Headwind event 
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6.4.6.2 TEST 2: POOR VISIBILITY 

The second test consists of injecting the event Poor Visibility event into the ADCUE 

scenario. This event lowers the attribute Envrionment.Herat Visibility to a value 

lower than the action Take Video of Herat requires for accurate pictures. Because 

the visibility over Kabul has not changed, it is expected that the event will only 

prevent the reconnaissance of Herat. As seen in Figure 25, ADCUE simulation 

shows that this is the case; a mission to Herat fails, but a mission to Kabul is not 

affected.  

 
Figure 25: UAV scenario with Poor Visibility event in Herat  
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6.5 OVERALL RESULTS 

Through the testing of the simple breakfast scenario, expected and unexpected 

results were observed. First, the tests involving the breakfast scenario demonstrate 

that ADCUE does automatically detect and determine the consequences of events 

on a plan. One of the unexpected results was ADCUE’s extra validation of the plan 

and the setup of the plan by catching a logic mistake. The testing of the slightly 

more complex UAV scenario using static plans showed that ADCUE can easily be 

applied to a new domain by changing the simulation files. Through the testing 

summarized in Table 1, it can be said that the most basic functionality of ADCUE 

works well and in some respects performs additional useful checks. 

Table 5: Summary of testing and results 

Simulation Event Description Actions Affected Results 

Breakfast Sunny 
Forecast 

The daily forecast 
calls for sun 

None Pass 

Breakfast Sour Milk The milk has gone 
sour 

Cook Pancakes, Pour 
Milk and Cereal 

Pass 

Breakfast Free 
McMuffin 

A buy one, get one 
free McMuffin deal 

Free McMuffin, Pour 
Milk and Cereal, Cook 
Pancakes, Order 
McMuffin, Eat Food 

Pass. 
Unexpected 
results from 
human error  

UAV Headwind High headwind  Take Off Pass 

UAV Poor 
Visibility 

Visibility at Herat is 
low 

Take Video of Herat Pass 
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CHAPTER 7: CONCLUSION 

This chapter summarizes the thesis as a whole, including the problem, existing 

approaches, and the proposed system. Weaknesses or opportunities discovered are 

covered in the future research section. The final section concludes with a forward 

thinking perspective on results, lessons learned, and applicability to future 

projects.  

7.1 SUMMARY 

Throughout this thesis, automatic determination of the implications associated 

with unexpected events has been investigated and an approach entitled ADCUE 

was proposed to enable autonomous reasoning about unexpected events. Because 

this subject deals with a significant amount of planning, background concerning 

this topic was reviewed to ensure readers were properly familiarized with the 

material. Expanding upon the information covered in the background, the technical 

literature was reviewed to see how other researchers have approached this 

particular problem in the past. Most of the literature focused on dealing with 

events, or plan interruptions, by associating the events with particular contingency 

plans that provide workarounds for the consequences of the events. Several 

reviewed approaches exhibited solutions that used more intelligent behavior by 

considering the available actions within the world and dynamically changing the 

plan based on the unexpected event.  

Based on paradigms discussed in the background and in the literature review 

sections, a new model entitled ADCUE was proposed in an attempt to address the 
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problem. The two key components of the model, slicing and the intersection 

operator, were described and subsequently applied to the domain of planning and 

detecting unexpected events. Mathematical definitions, pseudo code, and examples 

were provided to ensure that the proposed approach was sound and could be fully 

understood. The actual implementation of the ADCUE model, along with all 

associated components, was detailed, including how each ADCUE component 

contributed to the overall model. Both automated and manual plans were covered, 

including the creation of a reusable library that other agent-based simulations can 

utilize.   

To ensure that ADCUE worked as advertised and expected, two scenarios in 

different domains and of differing difficulty were created for testing purposes. Once 

imported into ADCUE, events were injected into the scenarios to observe the 

effectiveness of ADCUE’s detection and determination of the consequences of the 

events on the plan. Each injected event was treated as a test and the predicted 

results were compared to the actual results to evaluate the model.  

7.2 FUTURE RESEARCH 

With promising initial results, it is worth following up on this work and researching 

topics that may lead to enhancements to ADCUE. Several significant subjects that 

could yield a more robust and capable system include multi-agent systems, 

probabilistic modeling, and learning.  
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7.2.1 MULTI-AGENT SYSTEM 

A simulation of a single agent has limited application. Just as it takes many 

soldiers to win a battle, oftentimes multiple agents need to work together to achieve 

the goal. Extending ADCUE with the provision for coordinating the efforts and 

capabilities of agents when developing a plan could be extremely beneficial. One 

potential approach assumes a hierarchical authority structure. Not only does this 

assumption simplify the analysis, but it also mimics reality as can be seen in most 

military structures. While individual soldiers within a platoon may perform 

completely independent actions, a platoon as a whole can be viewed from a higher 

authority as a single entity. As long as the platoon’s individual actions contribute to 

a collective action (such as attack target), individual soldier action can be neglected 

from the point of a Major. The Lieutenant in charge of the platoon embodies the 

abilities of the entire platoon from the perspective of the Major. Thus, the 

Lieutenant acts as the communication layer between individual units of the platoon 

(soldiers or squads). Extrapolating this concept out into a generic, non-military 

sense, similar or dissimilar agents can be grouped together under the authority of a 

boss agent. The boss agent represents the collective actions of the group. Similar to 

a tiered organization chart or a military structure, multiple boss agents can be 

grouped together under the authority of a higher boss agent.  

7.2.1.1 POTENTIAL REASONING MECHANISM 

Given a hierarchical authority structure of a boss agent with several individual 

agents under her authority, the boss agent receives a set of objectives to achieve. To 

develop a plan to achieve these objectives, the boss queries each agent under her 

authority to see if it can achieve the objective on its own. If one agent is capable of 

achieving the objective, a plan involving only that agent is developed and the boss 
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agent reports the objective can be achieved. However, if a single agent is incapable 

of single-handedly achieving the objective, the agent reports to the boss a partial 

plan consisting of all the actions the individual agent can contribute towards 

completing the objectives. The boss can then query other agents, asking them to 

contribute to the partially built plan. Thus, the plan is built incrementally, with 

agents committing actions to the plan as they have the ability to do so. This model 

assumes perfect willingness and cooperation between agents; treachery or laziness 

of agents is not considered.  

This discussion brings up several interesting issues. First, how should the boss 

agent distribute the load? If a single agent is capable of achieving the objective, 

should the boss agent consider ordering several additional agents to work in 

parallel in order to accomplish the objective more quickly? Secondly, if multiple 

agents are capable of achieving an objective, how does the boss agent determine 

which agent(s) to assign to the plan? When unexpected events occur, who is 

responsible for determining the consequences and who is responsible for 

integrating the replanning across multiple tiers of command? These are all 

questions that provide interesting and useful future research topics. 

7.2.2 PROBABILISTIC MODELING 

One of the assumptions thus far is that all actions within ADCUE are completely 

deterministic, i.e. each action will always produce the same conditions in the same 

situation. However, this is not a realistic assumption when dealing with the real 

world. For instance, consider an Unmanned Aerial Vehicle (UAV) on a mission to 

survey and destroy a target with one of its Hellfire missiles. In this scenario, the 

action Launch Hellfire Missile should not always yield the postcondition 
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“Target.Destroyed equals true” because no missile type can hit the target 100% of 

the time. In the real world, inherent uncertainties lead to non-deterministic actions.  

In order to remedy this shortcoming in ADCUE, the concept of probabilistic actions 

can be introduced. The difference between a normal action and a probabilistic 

action is that a probabilistic action can initiate an event. By injecting an event into 

the system, the action can effectively mimic the randomness found in a real world 

system by modeling uncertain action outcomes. For instance, if a Hellfire missile 

launched from a UAV has a history of 5% failure, the action Launch Hellfire Missile 

can initiate the event Missed Target 5% of the times the action is executed. This has 

several benefits. First, it provides a richer representation than a simple binary fail 

or succeed criteria. Second, it allows multiple outcomes to result from the execution 

of a single action. For instance, the Launch Hellfire Missile may also initiate a Killed 

Civilians event to model the accidental and unfortunate side effects of warfare. 

Through this introduction of probabilistic actions that can initiate events, ADCUE 

could represent the natural uncertainty found within the real world more 

accurately. 

7.2.3 LEARNING 

Learning is often an important method for augmenting the abilities of an agent over 

time. While ADCUE does not explicitly define any learning strategies, it can 

facilitate learning through the concept of an unknown event. An unknown event is 

an event whose postconditions are not fully known (or perhaps not known at all). 

Thus, the agent initially has no way of knowing how the event occurring will affect 

the plan. The obvious goal of the agent is to determine or learn the effects of the 

agent through experience. The agent first assumes a null hypothesis: the event will 
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have no effect on the plan. As the agent executes the plan, the agent closely 

monitors the postconditions of actions to determine if any unexpected changes are 

occurring. If so, they can be attributed to the unknown event. By validating or 

invalidating the null hypothesis in this manner, a general trend of event effects may 

be able to be extracted. Because events postconditions may vary depending 

conditions (location of the event, severity of the event, etc), the agent may need to 

experience the event multiple times before learning it well. One learning strategy 

that the agent could employ is Case-Based Reasoning (CBR), where the case 

contains the attributes of the current conditions, any known information about the 

event, and the resulting postconditions that the agent notices. After gathering 

several cases representing the occurrence of unknown events and the 

postconditions that resulted from the event, the agent may be able to learn and 

predict postconditions based off of the cases in the case library. Other approaches 

may yield more advanced algorithms that more accurate or rapidly learn from what 

is observed in the environment.  

7.3 CONCLUSIONS 

From the results observed during the testing of ADCUE, it can be concluded that 

ADCUE performs accurately for simple scenarios and satisfies the proposed 

hypothesis. Several different types of unexpected events were tested and ADCUE 

handled them with ease, as was expected. It is interesting to note that the one 

unexpected result did not arise from ADCUE’s inability to handle an unexpected 

event, but human error. 

Currently, several limitations exist in ADCUE. First, time is not well represented in 

the simulation. Taking time into account would integrate more realism into ADCUE 
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by allowing agents and plans to have constraints not only on resources and 

environmental conditions, but also temporally dynamic components, such as 

events. Another limitation of ADCUE is the inability to fully operate dynamically 

within a simulation. While the framework is laid down, further work is required to 

integrate the pieces and allow agents to dynamically interact with the environment 

in temporal manner. One of the most problematic disadvantages to the approach 

presented in ADCUE is the data intensive nature of describing the components. 

Because each component must be accurately described in detail for ADCUE to 

correctly analyze the plan and all facets of the plan, the process of designing and 

implementing a scenario can be labor intensive. However, with the introduction of 

inheritance, component libraries, and automation techniques, this disadvantage 

can be drastically reduced. Furthermore, many future areas of research may be 

followed to expand the abilities of ADCUE and turn it into an honestly useful 

paradigm. 

This type of research is envisioned to eventually be useful in a diverse range of 

domains. The ability to reason about unexpected events would be particularly 

beneficial in the obvious application of planning and scheduling in dynamic 

environments. For example, highly detailed and dependent projects, such as 

construction could one day use such a system to determine the consequences of 

late shipments. Other areas of application include military simulators or training 

systems that allow events such as unexpected military movements or ambushes to 

be injected. Modeling “what-if” scenarios of static plans is another application of 

this research. The successful first tests of the ADCUE model indicate that the 

model is promising enough to continue the research to improve and expand the 

approach. 
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