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 
Abstract—Intraocular microsurgery with robotic assistance 

aims to boost surgeon performance when operating on delicate 
sub-millimeter structures of the eye. Fast and accurate mapping 
and localization of retinal vasculature is critical to increasing the 
aid that robots can provide during challenging procedures such 
as photocoagulation and cannulation. We present EyeSLAM, an 
algorithm that delivers 30 Hz real-time simultaneous localization 
and mapping of the human retina and vasculature during 
intraocular surgery. EyeSLAM combines fast vessel detection 
with fast 2D scan-matching techniques to build and localize a 
probabilistic map of the vasculature. The algorithm improves 
upon previous work by using a scan-based localization algorithm 
for higher convergence rate and increased robustness to quick 
motion, and more robust vessel detection.  We demonstrate that 
even in the harsh imaging environment of retinal surgery with 
high magnification, quick shaky motions, textureless retina 
background, variable lighting, and tool occlusion, EyeSLAM can 
map 75% of the vessels within two seconds of initialization and 
localize the retina with RMS error of under five pixels 
(translation) and one degree (rotation).  
 

Index Terms—Medical imaging, vessel detection, retinal 
registration, localization and mapping (SLAM), vitreoretinal 
surgery. 
 

I. INTRODUCTION 

NTRAOCULAR microsurgery is often regarded as particularly 
demanding due to the extraordinary precision required to 

manipulate the small, delicate structures of the retina. The 
confounding influence of physiological tremor on the 
surgeon’s micromanipulation ability and the challenging 
nature of the surgical access further increase difficulty [1], [2]. 
Routine procedures such as membrane peeling require the 
surgeon to manipulate anatomy less than 10 μm thick [3]–[5], 
and laser photocoagulation operations benefit from accurate 
placement of laser burns [6], [7]. Promising new procedures 
such as vessel cannulation necessitate precise and exacting 
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micromanipulation to inject anticoagulants into veins less than 
100 μm in diameter [8], [9]. 

To address micromanipulation challenges in retinal surgical 
procedures, a variety of assistive robots have been proposed. 
Master/slave robots developed for eye surgery include the JPL 
Robot Assisted MicroSurgery (RAMS) system [10], the ocular 
robot of Ueta et al. [11], and the multi-arm stabilizing 
micromanipulator of Wei et al. [12]. Retinal surgery with the 
da Vinci master/slave robot has been investigated [13] and led 
to the design of a Hexapod micropositioner accessory for the 
da Vinci end-effector [14]. The Johns Hopkins SteadyHand 
Eye-Robot [15] shares control with an operator who applies 
force to the instrument while it is simultaneously held by the 
robot arm. A unique MEMS pneumatic actuator called the 
Microhand allows grasping and manipulation of the retina 
[16]. The Microbots of Dogangil et al. aim to deliver drugs 
directly to the retinal vasculature via magnetic navigation [17]. 
A lightweight micromanipulator developed in our lab, Micron, 
is fully handheld and has been used with vision-based control 
to aid retinal surgical procedures [18], [19]. 

While classic robot control can provide general behaviors 
such as motion scaling, velocity limiting, and force regulation, 
more specific and intelligent behaviors require knowledge of 
the anatomy. Vision-based control combines visual 
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Figure 1: Summary of the EyeSLAM algorithm running on ex vivo porcine
retina under surgical microscope. (a) Raw input video of retina during surgery
via high-magnification microscope is run through (b) fast vessel detection,
forming noisy observations which is used to build and localize (c) a 2D
occupancy map representing probabilities of vasculature at each point (with
yellow box showing the localized camera view), yielding (d) EyeSLAM
output of the full vessel map localized to the current frame. 

(c) Probabilistic Map
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information of the anatomy with robotic control to enforce tip 
constraints, or virtual fixtures, which enact task-specific 
behaviors and provide guidance to the surgeon [20], [21]. In 
retinal vessel cannulation, knowledge of the vessel location 
relative to the instrument tip can aid robotic behavior and 
more effectively help guide the robot during injections into the 
vessel [22], [23]. During retinal laser photocoagulation, 
placing burns on retinal vessels should be avoided as this can 
occlude the vein, possibly causing vitreous hemorrhage [7]. 
However, most existing methods for vessel detection and 
retinal registration are not suited to real-time operation, often 
preferring accuracy over speed for offline use, and do not 
handle constraints required for intraocular surgery, such as 
challenging lighting or robustness to tool occlusion.  

Becker and Riviere introduced a formulation of 
simultaneous localization and mapping for retinal vasculature 
that ran in real-time using fast vessel detection and smoothing 
noisy observations over time while building and localizing to a 
map [24]. In this paper, we have extended this work. The new 
algorithm, called EyeSLAM, offers improved mapping and 
localization of the retinal vasculature in real time for use in 
intraocular surgery. It exhibits robustness to variable 
illumination conditions, high magnification, quick shaky 
motion, textureless retina, and partial occlusions. Specifically, 
this paper introduces two new components of the EyeSLAM 
algorithm: (a) a scan-based localization algorithm to a 
dynamic map for higher convergence accuracy and increased 
tolerance of quick motion; and (b) more robust vessel 
detection with better rejection of spurious detections.  The 
paper also improves upon [24] by including quantitative 
results showing the effectiveness of EyeSLAM on simulated 
and recorded surgical video imagery, along with qualitative 
demonstrations of its usefulness in simulated surgical 
scenarios.  

 In Section II, related work in simultaneous localization and 
mapping (SLAM) and in retinal registration is described. 
Section III describes our approach of using the fast retinal 
vessel detection of [25] for feature extraction, an occupancy 
grid for mapping [26], and fast multi-scale scan matching [27] 
for localization. In Section IV, we evaluate our approach on 
videos of paper slides, porcine retina ex vivo (see Fig. 1), and 
human retina in vivo, and provide a comparison with our 
previous work [24].  

II. RELATED WORK 

A wealth of published works related to localization and 
mapping of retinal vessels exists and is summarized in Table I. 
Most can be grouped into three general categories: vessel 
detection, retinal registration, and the more general robotic 
approach of simultaneous localization and mapping (SLAM).  

A. Vessel Detection 

Vessel detection is the process of extracting vasculature in 
retinal imagery and often includes calculating the centerlines, 
width, and orientation of vessels. One set of methods uses 
local color and intensity information to classify the image on a 
per-pixel basis [28]–[31]. Another popular approach is to 

search across the image for vessel-like structures using 
matched filters at various locations, scales, and orientations 
[25], [32], [33]. Other algorithms use a bank of Gabor 
wavelets to do a pixel-wise classification of the image [34]–
[36]. However, most focus on offline analysis of low-
magnification, wide-area images such as fundus images where 
accuracy is prioritized over speed. With the exception of 
speed-focused algorithms such as [25], [31], [36] and other 
hardware-accelerated methods [37]–[39], most algorithms 
require more than 1 s to run, which is insufficiently fast for 
surgical robotic control loops, which often require 10-60 Hz.  

One notable exception is the rapid exploratory algorithm of 
Can et al. [25] that traces the vasculature, yielding a 
monotonically improving set of partial results suitable for real-
time deployment at 30 Hz. Can et al. [25] achieves high-speed 
vessel detection through a very fast sparse initialization 
followed by a tracing algorithm. First, a fast search for vessel 
points along a coarse grid is performed to initialize a set of 
seed points on vessels. Each seed point, or detected candidate 
vessel, is then explored in both directions along the vessel 
with an approximate and discretized matched filter. At each 
iteration, the best fit for location, orientation, and width of the 
vessel centerline is estimated through the evaluation of several 
matched filters. Using orientation estimates to initialize the 
next iteration, the network of vessels in the image is traced 
without having to evaluate areas lacking vessels. Because only 
a small fraction of the total number of pixels in the image is 
ever processed, most of the vessels can be detected very 
rapidly. However, the vessel detections of [25] are usually 
noisier and less complete than slower, more computationally 
expensive methods. 

B. Retinal Image Registration 

Numerous approaches to registering, mosaicking, and 
tracking exist to take a sequence of retinal imagery and 
calculate relative motion between images. In general, 
approaches match one or more of several features between 
images: key points, vasculature landmarks, or vasculature 
trees. Key point algorithms use image feature descriptors such 
as SIFT [40] to find and match unique points between retinal 
images [41]–[44]. Vasculature landmark matching algorithms 
find distinctive points based on vessel networks, such as vein 
crossings or bifurcations, and match custom descriptors across 
multiple images [45]–[47]. Other approaches augment or 
eschew key points and use the shape of extracted vessels to 
match vasculature trees [48], [49]. More recent algorithms use 
hybrid approaches that combine sparse keypoint matching 
with direct pixel tracking to register video frames together and 
build a mosaic of the retina in real time [50].  

Methods that depend on local key point features [41], [42], 
[44], [51] often result in poor tracking at high magnification 
because of the lack of texture on the retina and the non-
distinctive nature of individual points on the veins. With 
optimization, the algorithms of [45], [47] could be run in real-
time on modern hardware; however, they only use sparse 
retinal vessel landmarks, which are relatively few or non-
existent at high magnifications. More importantly, they only 
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perform localization and do not build a map of the vasculature. 
Also, many of these approaches suffer from interference 
caused by the instruments, which both occlude existing 
features in the image and create new, spurious features on the 
moving shaft. Our approach is an adaptation of the real-time 
correlative scan-matching method proposed by Olson et 
al.[27], using vasculature trees to build maps and register 
motion. This method is not listed in Table I because it is not 
originally designed for retinal registration, but instead more 
traditional SLAM applications (see Section II.C). While 
EyeSLAM may not have as high accuracy as some algorithms 
listed in Table I, it is unique because it operates in real time 
and provides both vasculature maps and retinal registration, 
making it suitable for tight control loops in robotic surgical 
assistance.   

C. Simultaneous Localization and Mapping (SLAM) 

The problem this paper addresses is similar to a core 
problem addressed in robotics: simultaneous localization and 
mapping, or SLAM. In SLAM, a robot with imprecise, noisy 
localization (for instance, odometry) explores an unknown 
environment with local sensors (such as a laser range-finder) 
with the goal of building a global map and localizing itself 
relative to this map [52]. Using a probabilistic formulation, 
SLAM optimizes a joint probability over the map and the 
localization to simultaneously solve for the true positions of 
the robot and global environmental features. Early solutions 

such as the Extended Kalman Filter (EKF) scaled poorly and 
did not handle ambiguous landmark associations well [52]. 
Recent particle filter approaches such as FastSLAM are faster 
and more robust [53]. With the introduction of occupancy 
grids, which discretize the map and maintain a grid of 
probabilities representing whether each cell is occupied, 
SLAM algorithms scale more effectively [26].  

Comparing SLAM to our problem, the task of building a 
temporally consistent map of vasculature and localizing the 
current observation of vessels to this map exhibits many 
similarities. However, most implementations of SLAM are 
tailored to space-carving sensors such as laser range-finders 
instead of overhead sensors and assume a reasonably good 
robotic motion model, both of which are poor assumptions in 
the problem of retinal localization and mapping. Thus, most 
developed SLAM algorithms are not directly applicable 
without adaptation for the problem being addressed here. 
Instead, our approach is to fuse core ideas of SLAM and 
retinal algorithms together to provide real-time registration 
and mapping of the retina in a surgical environment.  

III. METHODS 

Our goal is to design an algorithm that maps and localizes 
retinal vessels by merging retinal vessel detection with retinal 
image registration and taking advantage of temporal 
information as seen in SLAM approaches. A fusion of 
methods is needed: fast retinal vessel detections algorithms are 

TABLE I 
COMPARISON OF VARIOUS VESSEL DETECTION, REGISTRATION, AND MAPPING ALGORITHMS FOR THE RETINA 

Year Algorithm 
Vessel 

Detection 
Retina 

Registration 
Retina 

Mosaicking
Vasculature 

Mapping 
Method 

Image  
Size 

Reported 
Time 

1989 Chaudhuri et al. [32] X Matched Filters * 50 s 
1998 D. E. Becker et al. [45] X X Vasculature Landmarks  640x480 0.9 s 
1999 Can et al. [25] X Tracing Templates 1024x1024 30 ms 
2002 Can et al.  [46] X X Vasculature Landmarks 1024x1024 * 
2002 Stewart et al. [46] X X Vasculature Landmarks & Tree + ICP 1024x1024 5 s 
2003 Chanwimaluang et al. [28] X Matched Filters + Local Entropy  605x700 3 min 
2003 Mojon et al. [29] X Adaptative Local Threshold * 8 s 
2004 Staal et al. [30] X Ridge-Based Segmentation 768x584 15 min 
2006 Cattin et al. [41] X X Keypoint Features (SURF) 1128x1016 * 
2006 Chanwimaluang et al. [49] X X Vasculature Tree + ICP & Correlation 600x900 20 s 
2006 Mendonca et al. [63] X Morphological Segmentation 565x584 2.5 min
2006 Soares et al. [34] X Gabor Wavelets 768x584 3 min 
2006 Sofka et al. [33] X Multiscale Matched Filters 700x605 10 s 
2008 Alonso-Montes et al. [31] X Pixel Level Snakes 768x584 0.2 s 
2010 Chen et al. [51] X Keypoint Features (Harris) 500x500 15 s 
2010 Lupascu et al. [35] X Gabor Wavelets + AdaBoost 768x584 2 min 
2010 Wang et al. [42] X X Keypoint Features (SIFT) 640x480 1 s 
2011 Broehan et al. [47] X X Vasculature Tree 720x576 40 ms 
2012 Bankhead et al. [36] X Wavelets + Spline Fitting 564x584 0.6 sec 
2013 B. C. Becker et al. [24] X X X Vasculature Tree + ICP 402x300 25 ms 
2014 Koukounis et al. [39] X Matched Filters on FPGA 640x480 35 ms 
2014 Zheng et al. [64] X X X Vasculature Landmarks * 1.5 s 
2014 Richa et al. [50]  X X  Keypoint Features (SIFT) + SSD 720x1280 15 ms 
2015 Chen et al. [65] X X Vasculature Landmarks * * 
2015 EyeSLAM (our approach) X X   X Vasculature Tree + Scan Matching 400x304 15 ms 

 

A sample of representative algorithms for detection, registration, and mapping of the retina and retinal vessels sorted by publication date. Core capabilities 
and underlying methods used are noted. Vessel detection is the ability to return where retinal vessels are from a single image of the retina. Registration is the 
ability to determine the transformation between two images of the retina. Mosaicking is the ability to build up a map of the observed retina, while vasculature 
mapping is the ability to build up a map of the seen retinal vessels. Times for detection algorithms are for a single image, whereas times for registration 
algorithms are often for a pair of images. No attempt has been made to normalize for computing advances, so estimates are upper bounds. EyeSLAM fills a 
niche for real-time performance while achieving retinal vessel detection, registration, and vasculature mapping simultaneously. *No data reported.  
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noisy, incomplete, and do not handle occlusions [25]; retinal 
image registration methods that do build vasculature maps are 
orders of magnitude slower than required for real-time robotic 
guidance [48], [49]; and SLAM algorithms are not designed or 
tuned for application in intraocular surgeries. Fig. 2 shows a 
new algorithm called EyeSLAM derived from [24] that 
incorporates aspects of [25], [26], [52], [54] to perform >30 
Hz vasculature mapping and localization of retinal video using 
rapidly-detected vessels as features, an occupancy grid for 
mapping, and fast scan matching for localization to robustly 
handle noise, tool occlusions, and variable illumination.  

A. 2D vs. 3D Models of the Retina 

When considering a model of a retina, a 3D sphere seems 
the most suitable representation for building a map of the 
inside of the eye. However, a full 3D representation is 
problematic because 3D estimation in the eye is challenging. 
Properly calibrating microscope calibration can be difficult 
[55] and modeling the lens of the eye to achieve intraocular 
localization is an area of active research [56], especially in 
conjunction with the nonlinear vitrectomy lenses often used 
during intraocular surgery. Further complicating matters is the 
deformation caused by the tool inserted through the sclera (or 
white of the eye). In practice, most approaches to retinal 
mapping choose a simpler 2D representation, assuming a 
roughly planar structure for the retina with an X translation, Y 
translation, and an in-plane rotation. Scaling can be added, but 
often has local minima that cause poor tracking [50], so we 
use the 3DOF representation without scaling. We have found 
the planar assumption has sufficient power to compactly 
represent the retina, which is especially true at high 
magnification where only a small subset of the retina is seen 
and can be treated as a plane. However, to compensate for 
small shifting vessel locations caused by 3D rotation, we do 
add a dynamic aspect to the map (see Section III.D). 

B. Problem Definition 

Given an series of input video frames ܫ ൌ ሾܫ଴, ,ଵܫ … ,  ሿ்ܫ
over a discretized time period ݐ ∈ ሾ0, 1, … , ܶሿ, the 
algorithm should output a global map in the form of ܰ 
vasculature points ܯ ൌ ሾܯ଴,ܯଵ,…  ேሿ and theܯ,
corresponding camera viewpoint locations ܮ ൌ ሾܮ଴, ,ଵܮ … ,  ሿ்ܮ
of the input video frames in the map. At time ݐ, we 
parameterize the ݅th vein 2D point as ܯ௧

௜ ൌ ሾݔ௧
௜, ௧ݕ

௜ሿ. As 
discussed in Section III.A, we approximate the global map as 
a planar section of retina. Similar to many other approaches to 
retinal registration, we assume an affine camera with a 
viewpoint at time ݐ as a 2D translation and rotation ܮ௧ ൌ
ሾݔ௧, ,௧ݕ ݐ ௧ሿ from the initial position atߠ ൌ 0. As seen from our 
results, this 3-DOF motion model is sufficient even with a 
fairly large field of view of the retina. Observations of vessels 
in the camera at time ݐ are denoted by ܼ௧. 

 

C. Feature Extraction via Vessel Detection 

Finding features for matching at high magnification is 
difficult. Traditional key point detectors such as SIFT [40] or 
SURF [57] often fail to find distinctive points on the 

textureless retina. Likewise, sufficient vasculature landmarks 
such as crossovers or bifurcations may not be present to 
function as good features with high magnification. We instead 
use many points along the entire vein extracted from vessel 
detection algorithms. These points are more difficult to match 
individually with a local feature descriptor, so we instead 
match them as a group based on the shape of the vasculature 
network. As in [24], we use the highly efficient, but noisy 
vessel tracing algorithm of Can et al. [25] to detect vessels, 
which form the anonymous matching points (see Fig. 1b).  

To cull spurious detections on vessel-looking structures 
such as the tip of the instrument or light-pipe, each vessel 
point must pass a color test and a bloom proximity test. The 
color test rejects pixels that are too dark or insufficiently red, 
while the bloom proximity test rejects vessel points that are 
too close to large white specular blooms in the image. These 
two simple tests reject many false positives in the detection 
stage and yield the current observation ܼ௧ as 2D points. The 
new algorithm EyeSLAM is equipped with a new filter that 
applies a mask on the dark area circling the visible retina area 
to mask out fringing effects caused by the microscope. 
Compared to [24], we have also enhanced the vessel detection 
method of Can et al. [58] by increasing the allowable change 
in orientation while tracing, which provides better coverage of 
the vasculature. Occasional false positive vessels are detected 
this way, but usually remain as low-probability vessels. 
Finally, because the vessel detection has coarse discrete filters 
for fast operation, we apply an averaging smoothing filter 
across the vessel after tracing, which is another new aspect of 
the present paper. 

D. Mapping via Occupancy Grids 

A global map that holds the current best estimate of all the 
observed vasculature is maintained using an occupancy grid 
ܱ௧, which discretizes the map into pixel-sized cells (see Fig. 
1(c)). Each pixel in the occupancy grid represents the 
probability that a vessel occupies that particular spatial 
location. At each time instant ݐ, the current observations ܼ௧ are 
transformed to the map with the best estimate of the location 

Figure 2: Block diagram showing the steps of EyeSLAM algorithm that maps
and localizes retinal vessels during intraocular surgery. Vessels are detected
and registered to the map, building an occupancy grid. The map is initialized
with the raw vessel detections on the first frame and resized dynamically as
needed. The registration allows the map to be transformed back into the
current frame, providing full vasculature map along with localization. 
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 .௧ିଵ and used to update the probabilities in the occupancy gridܮ
For each vein point ܼ௧

௜, a defined value is added to the map at 
the corresponding cell location, which increases the 
probability that a vessel exists at each detected vein point. The 
occupancy grid has a maximum allowed value to prevent 
unbounded evidence from accumulating. To handle a slightly 
changing environment by 3D rotation, lensing effects, or tool 
deformation, a decay function decreases the probability of all 
grid cells, allowing vessels that have not been detected to 
vanish after some time. While it would be more robust to 
explicitly model these, instead of using a decay to let the map 
react to changes, nonlinearities such as non-rigid tool/tissue 
interaction are difficult to model, especially in real time. 
Figure 3 shows sample occupancy grid maps that model the 
probability of vessels at each location with multi-resolution. 

Unlike [24], the EyeSLAM algorithm uses a dynamically 
sized map that can automatically expand to accommodate 
newly detected vessels that were located outside the previous 
map boundaries as described on Fig. 2 on the “Dynamic Map 
Expansion” and “Map Updating” steps. The map update 
calculates the camera viewpoint on the map to not decay the 
probability of the grid cells located outside the currently 
observable field of view. The formulation of the occupancy 
map reasons about uncertainty over time, smoothing noise 

while handling occlusions and deformation. Our previous 
work required finding the centerlines of the vessels as a 
necessary part of the registration step, which required an 
expensive image skeletonization process. The new registration 
method described in Section III.E avoids this time-consuming 
procedure and operates directly on the occupancy grid map. 
The final map is now generated using all the vessel points with 
a high probability value in the occupancy grid map. It is still 
possible to calculate and build the vessel centerlines locally 
around the areas of interest if necessary for robotic control, but 
it is no longer integral to the internal workings of the 
algorithm, which speeds computations compared to [24].  

E. Localization via Scan Matching  

To localize eyeball motion (which is mathematically 
equivalent to localizing camera motion), a 3-DOF planar 
motion model is chosen. The problem of localization is then to 
estimate the 2D translation and rotation ܮ௧ between the current 
observations ܼ௧ and the occupancy grid map ܱ௧. The original 
formulation [24] used Iterative Closest Point (ICP) algorithm 
for registration (or localization) between a skeletonized 
version of the occupancy map and the current vessel 
observations, similar to [59]. While this worked well for 
smooth motions, it had a tendency to fail with large, jerky 
motions, which caused divergence and would reset the tracker.  

The biggest improvement compared to [24] is the replacing 
of ICP with the fast correlative scan-matching method 
proposed by Olson et al. [27]. It is used to scan the whole 3D 
search window of solutions ௟ܹ, parametrized by ݔ௟, ݕ௟ and ߠ௟, 
and to find the best match ܤ௧ between the map ܱ௧ and the 
current observations ܼ௧ transformed to the map with ௟ܹ

ିଵ. The 
solution associated with the best match is considered as the 
best solution for ܮ௧ given the probabilistic map. The real 
challenge is to minimize the processing time while 
maximizing the quality and the robustness of the solution. 

A brute-force method that scans every solution is too slow. 
As detailed in [27], we adopt a multi-resolution approach 

Figure 4: Localization accuracy and error compared to labeled video of human retina in vivo. (a) Translation component representing the L2 norm of X and Y (b)
Rotation component (c) Sample output of raw video, vessel detection, map, and localized EyeSLAM output from frame 643.  
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Figure 3: Multi-resolution maps used by the scan-matching registration
algorithm. (a) High resolution map. (b) Low resolution map. 
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consisting in scanning the  3-DOF search window (two 
translations and a rotation) with two different map resolutions 
(Fig. 3) . A first scan quickly identifies the approximate best 
solution in the low-resolution map. Afterwards, a second scan 
is initiated in a restricted search around the initial low-
resolution transformation. This is performed on the high-
resolution map to more precisely find the best approximation 
of ܮ௧.  

Incomplete vessel detections at each frame can be noisy, so 
the final scan-matching estimation of the localization is 
smoothed using a constant-velocity Kalman filter, yielding the 
localization ܮ௧. At most 500 vessel points are selected for scan 
matching (at random) to improve runtime. If too few 
observations are found, they are discarded and the current 
localization is kept. Once scan matching completes, the 
occupancy map is then updated with the newly registered 
vessel points ܼ௧ to close the loop on the algorithm. 

IV. EVALUATION 

We have evaluated EyeSLAM both quantitatively and 
qualitatively on a variety of videos of paper slides, porcine 
retina ex vivo, and human procedures in vivo. 

A. Video Sequences  

For ease of robotic testing in our lab, color video recorded 
with a surgical microscope is captured at 30 Hz with a 
resolution of 800x608 at a variety of high magnifications (10-
25X). We also tested with human retinas in vivo from videos 
taken of real human eye surgeries. Those videos have variable 
resolution at different magnification, which are specified if 
relevant in the results.  Fig. 4 shows the proposed algorithm 
output on a human retina during surgery in vivo. 

B. Retina Localization Results 

Fig. 4 shows translation and rotation transformation with 
error between EyeSLAM estimates and human-labeled ground 
truth for a video sequence of human retina during an epiretinal 
peeling procedure in vivo. Quantitatively in Table II, 
EyeSLAM with scan matching completely outperforms the 
previous ICP method for experiments on three video 
sequences. Error is measured relative to a transformation 
calculated from tracked fiducials for the paper slide or human 
labeled fiducials as ground truth.  As seen in Fig. 4, significant 
translations in excess of 100 pixels are evident on these video 
sequences. The global nature of the low-resolution scan-
matching step helps prevent jumps due to poor vessel 
registration. In the planar phantom experiment, where the 
vessels are well defined, the lighting uniform, and the motion 
smooth, the two results are close, although EyeSLAM 
localizes 50% better. On the porcine and human retina, earlier 
versions of the algorithm have very large RMS errors because 
of lost tracking and jumps that were not recoverable with the 
older ICP registration. The new EyeSLAM algorithm provides 
superior localization, which is important during critical 
microsurgical operations.  

TABLE II 
RMS ERROR OF EYESLAM LOCALIZATION 

Video 
Sequence 

# 
Fra- 
mes 

Becker et al. 
[24]  

EyeSLAM 
(ours)  Overall 

improve-
ment 

Dist-
ance 
(px) 

Theta 
(deg) 

Dista-
ance 
(px) 

Theta 
(deg) 

Paper Slide 
(Synthetic) 598 2.8 0.7 1.6 0.4 1.6 
Porcine Retina 
(ex vivo) 795 204.2 43.8 7.6 0.9 24.2 
Human Retina 
(in vivo) 997 115.1 31.6 4.8 0.8 22.0 

Root Mean Squared Error (RMSE) of 2D localization (translation + 
rotation) for three video sequences. The existing approach and improved 
EyeSLAM algorithm are compared. The approach of Becker et al. [24] works 
well for gentle transitions present in the synthetic example, but for more 
challenging video sequences with jerky motion, it jumps and cannot recover, 
causing very high overall error. On these videos, the proposed EyeSLAM 
algorithm is much more robust, with an average RMS error of under 5 pixels 
in X and Y and under 1° in rotation. Furthermore, this represents a 60% 
improvement over the earlier algorithm of Becker et al. [24] in ideal 
conditions and over 20X more accurate localization in sequences with high 
motion, where EyeSLAM is more able to maintain consistent tracking without 
jumping. 

Figure 5: Visual evaluation of EyeSLAM operating in diverse environments. (a) Printed retinal image on paper: note that EyeSLAM can maintain vasculature 
structure even during tool occlusion. (b) Porcine retina ex vivo at high magnification during rapid movement where some of the vessels have moved outside of the 
view of the microscope; note that EyeSLAM is able to remember where the vessels are, even outside of the microscope FOV. (c) Porcine retina ex vivo during 
retinal vessel cannulation experiment; notice very good performance in a challenging light environment despite a few false positives on the edge of the tool where
the color filter is failing. (d) Human retina in vivo during panretinal photocoagulation surgery; there are a few false positives on the red laser dot where the color 
filter is failing. (e) Chick chorioallantoic membrane (CAM) in vivo, a model for retinal vessels that is considerably more elastic than the retina; EyeSLAM does
not easily correct for deformations induced by the tool, and has some false positive responses on the edge of the membrane. (f) Human retina in vivo during 
epiretinal membrane peeling; note the good mapping and localization.  

(b) (a) (c) (d) (e) (f) (b) 
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C. Vasculature Mapping Results 

Figure 5 shows a visual, qualitative evaluation of the quality 
of maps EyeSLAM builds in a variety of simulated and real 
retinal surgical applications. While there are some incomplete 
detections and false positives in the map, EyeSLAM is able to 
largely map and localize in a diverse and challenging set of 
lighting conditions and environments. 

To measure map quality quantitatively, Fig. 6 evaluates 
vessel coverage and false positives on a typical human video 
sequence in vivo. Calculations are made using hand-labeled 
vasculature (including very thin vessels) in nine frames in the 
first five seconds. Initialization is fast, requiring less than 15 
frames (0.5 sec) to start building the map and only a few 
seconds to fully build the map, depending on the image quality 
and the ability of the vessel detection algorithm. On this 
sequence, EyeSLAM maps 50% of the hand-labeled vessels 
within 30 frames (one second) and achieves 75% coverage 
within 60 frames (two seconds). It does not achieve 100% 
coverage because it misses some very thin, faint vessels, and 
the ones located very close together. The false positive rate is 

under 10% after five seconds. Overall, EyeSLAM converges 
quickly with good coverage of the well-defined vasculature 
structures of the retina.  

D. Timing Performance 

For speed, images are resized in half, yielding resolutions in 
the range of 400x304 to 380x360, depending on video 
sequence source. On an Intel i5-3570K computer, EyeSLAM 
implemented in C++ runs at 50-100 Hz with a mean runtime 
of 15 ms on the three videos listed in Table II. This time 
includes all vessel feature detection, correlative scan-matching 
localization, and dynamic occupancy-grid mapping running in 
a single thread. This is about 2X faster than the previous work 
[24], and is sufficient to run simultaneous EyeSLAM 
algorithms on stereo microscope views in real-time (>30 Hz). 

E. Surgically-Applied Results 

To test the usefulness of the algorithm in intraocular 
surgical environments, we simulated the eye and retina in a 
rubber eyeball phantom filled with saline and fitted with a 
vitrectomy lens. We asked an operator to perform a vessel 
tracing task. Fig. 7(a) shows unaided human performance and 
Fig. 7(b) shows performance aided with the Micron robot 
enforcing virtual fixtures [60] derived from EyeSLAM. In (a) 

Figure 8: EyeSLAM can be used in the robotic micromanipulator Micron
control system to provide accurate targeting information on a paper phantom
during a simulated retinal photocoagulation experiment. EyeSLAM provides
the necessary localization information to compensate for motion of the retina
in real time and register the burn pattern to the pre-operatively specified
placement. The EyeSLAM map is used to automatically plan burn patterns
that do not overlap or touch the vasculature structure, thus protecting the
vessels while applying the needed treatment to the retina. (a) Target
placement before laser photocoagulation. Empty black circles represent
targets to be avoided within 100 µm of a vessel while white circles show valid
targets (b) After the completion of the automated laser photocoagulation.

(a) (b) 
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Figure 6: Vasculature map initialization statistics including coverage and false positives for the first five seconds of a video sequence of human retina in vivo
being prepared to receive photocoagulation treatment. (a) Vessel coverage and false positives of the thresholded probabilistic map evaluated at frame 0, 7, 15, 30, 
60, 90, 120, and 150 compared to hand-labeled vasculature at each frame. Coverage is the percentage of hand-labeled vasculature that EyeSLAM correctly built. 
False positives are the places in the EyeSLAM maps that do not correspond to true vessels. The spike in false positives at frame 15 is due to slight mis-
registration during initialization. (b) Raw video of frame 150 after five seconds. (c) Color-coded map at frame 150 with green representing true positives 
(correctly matched vessels), red representing false positives (spurious vessels), and blue representing false negatives (missed vessels). Best viewed in color. 

(a) Unaided 

(b) Aided with EyeSLAM & Robotic Aid 

Figure 7: Tracing a retinal vessel in an eyeball phantom. (a) Unaided attempt
to trace the vessel and (b) Aided attempt with a robotic micromanipulator
enforcing virtual fixtures based off EyeSLAM mapping and localization. The
blue line indicates the path of the tip of the instrument registered to each
frame of the video using EyeSLAM. Note in both cases, the entire phantom
eyeball is moving due to movement of the tool through the sclera port. 
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the tracing is imprecise because of normal physiological hand 
tremor at sub-millimeter scales whereas in (b) the tracing is 
smoother because the Micron robot knows vasculature map 
from EyeSLAM and can enforce virtual fixtures in the control 
loop to help keep the tip of the instrument on the vessel.  

Finally, we demonstrate the efficacy of pairing EyeSLAM 
localization and mapping with robotic aid in a simulated 
retinal surgery. Research performed in our lab has used the 
EyeSLAM algorithm with the Micron manipulator during 
simulated photocoagulation surgeries performed with 
vitreoretinal surgeons on synthetic paper slides of retina [61]. 
In laser photocoagulation, the goal is to accurately place burns 
on the retina while avoiding the vasculature. EyeSLAM 
provides the map of the vessels from which the system 
automatically plans the pattern of laser burns as well as the 
localization necessary to register that pattern to the retina as it 
moves during the procedure. The robotic aid aims the laser at 
the proper location on the retina, compensating for motion 
measured by EyeSLAM, and activates the laser. The surgeons 
using the Micron micromanipulator reduced burn placement 
error by over 50% while providing regular burn sizes with the 
robotic aid. Fig. 8 shows the automated avoidance of vessels 
using EyeSLAM during automated laser photocoagulation. 

V. DISCUSSION AND FUTURE WORK 

We have presented a new and improved algorithm, 
EyeSLAM, for retinal mapping and localization that operates 
in real time at >30 Hz. Designed to handle the dynamic 
environment of high magnification, variable illumination, and 
rapid motion inherent in retinal surgery, our approach 
converges quickly and is robust to occlusion. Fusing ideas 
from vessel detection, retinal registration, and SLAM, it has 
proven to be an effective method to temporally smooth vessel 
detections and build a comprehensive map of the vasculature. 
We demonstrated EyeSLAM is localization accurate within 
five pixels in translation and one degree in rotation on 
representative video sequences and initializes quickly, 
covering 80% of the vasculature within two seconds. 
Compared to [24], the new EyeSLAM approach addresses a 
lot of the earlier shortcomings, especially lag and loss of 
tracking. EyeSLAM has greatly improved localization, 
especially being robust to rapid motions common in retinal 
surgeries, along with additions to make the algorithm faster 
with more comprehensive vessel detections and an enhanced 
dynamic map that expands as needed. We have shown 
EyeSLAM is least 50% better than our earlier formulation 
with significantly more consistent tracking in more difficult 
video sequences. We have also show EyeSLAM operates in 
real time in challenging intraocular environments, providing 
both mapping and localization of the retinal vasculature to the 
Micron robot, improving operator performance in synthetic 
vessel tracing and photocoagulation experiments.   

Future improvements should include more robust vessel 
detection. Another focus is reducing false positives and better 
modeling occlusion with more sophisticated tool tracking such 
as [62]. More advanced 3D models could be beneficial and 
accomplished with stereo vision. More sophisticated closing 

the loop SLAM algorithms could be studied and applied. 
Finally, optimization to run in real-time on high-definition 
video may increase localization accuracy and map quality.   
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