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 

Abstract—We describe the design and performance of a hand-

held actively stabilized tool to increase accuracy in micro-surgery 

or other precision manipulation. It removes involuntary motion 

such as tremor by actuating the tip to counteract the effect of the 

undesired handle motion.  The key components are a three-

degree-of-freedom piezoelectric manipulator that has 400 µm 

range of motion, 1 N force capability, and bandwidth over 100 

Hz, and an optical position measurement subsystem that acquires 

the tool pose with 4 µm resolution at 2000 samples/s. A control 

system using these components attenuates hand motion by at 

least 15 dB (a fivefold reduction).  By considering the effect of the 

frequency response of Micron on the human visual feedback 

loop, we have developed a filter that reduces unintentional 

motion, yet preserves intuitive eye-hand coordination. We 

evaluated the effectiveness of Micron by measuring the accuracy 

of the human/machine system in three simple manipulation tasks.  

Handheld testing by three eye surgeons and three non-surgeons 

showed a reduction in position error of between 32% and 52%, 

depending on the error metric. 

 

Index Terms—Medical robotics, optical tracking, piezoelectric 

devices, compensation.  

 

I. INTRODUCTION 

ormal hand tremor under microsurgical conditions is 

typically several hundred microns peak-to-peak [1, 2], 

yet from medical necessity surgeons routinely manipulate 

much smaller structures (such as the 10 µm thick retinal 

internal limiting membrane [3]) using handheld tools.  Though 

such feats of dexterity are remarkable, it seems likely that 

some technical means for stabilizing hand motion during 

microsurgery would allow more consistent outcomes for 

existing procedures, and (more importantly) allow the 

development of new procedures currently made impractical by 

the accuracy limits of unaided manipulation [4, 5].  We have 

concentrated on applications to eye surgery due to the high 

accuracy required, but such technologies would likely be 

valuable in other areas of surgery [6] and for other 

applications such as biological research [7] or industrial 
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assembly tasks [8].  Before discussing the state of the art we 

must review relevant properties of the human component in an 

aided manipulation system: tremor characteristics, and human-

in-the-loop dynamics.  

A. Tremor Characteristics 

For simplicity we use tremor to mean any involuntary hand 

motion that creates position error.  This differs somewhat from 

medical usage, where tremor is defined as a rapid quasi-

periodic motion [9].  Furthermore, our concern is with the 

position error at the tip of a small tool manipulated using 

visual feedback under a microscope.  Tremor characteristics 

may differ if there are changes in visual feedback or target 

motion amplitude [10].   

Fig. 1 shows typical motion when a subject tries to hold a 

tool tip stationary (as in the experiments in §III).  In addition 

to the high-frequency quasi-periodic motion, there is also drift 

or wander (slow trends) and jerk (sporadic fast jumps).  

Whatever terminology is used, it is necessary to suppress all 

these motions to achieve useful stabilization.   

Fig. 2 shows the spectrum of the position error resulting 

from averaging the power spectrum across 54 trials using six 

subjects (27 minutes of data (§III.A)), then further averaging 

across 50 logarithmically-spaced frequency bins [11].  

 In physiology research, tremor is generally measured using 

an accelerometer, and then characterized by the peaks of the 

acceleration spectrum [11], so for comparison, we have also 

plotted the acceleration spectrum (obtained by multiplying the 

position spectrum by the frequency response of a double 

differentiation).  Although acceleration does have physical 

meaning, the prominence of the 10 Hz peak in the acceleration 

spectrum is arguably an artifact of the choice to analyze 
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Fig. 1.  Tremor signal with identified features.  Low-frequency wander and 

non-periodic jerk components dominate the peak-to-peak amplitude. 
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acceleration, with its implicit emphasis on high-frequency 

dynamics.  This acceleration peak (and the subsequent steeper 

lowpass rolloff in position error) result primarily from the 

biomechanical resonance of the hand [12], and give the 

acceleration signal its quasi-periodic character.  The implicit 

high-frequency emphasis of acceleration suits the medical 

definition of tremor, and accelerometers are convenient for 

medical diagnosis, but this prevalent practice in the tremor 

literature [11-14] discards important information about normal 

involuntary hand motion, and initially led us astray in defining 

Micron‘s performance requirements (§I.D).   

The bandwidth of human eye-hand feedback generally lies 

between 0.5 Hz to 2 Hz (§I.B).  It is only below this critical 

frequency that eye-hand feedback becomes effective.  This 

visual feedback contributes to the shift to a nearly flat position 

spectrum that begins below 0.5 Hz.  The microscope view is 

vertical, so the user relies on depth perception to discern 

motion in this direction.   At low frequencies, vertical error is 

twice as large as the horizontal error, apparently due to the 

inferiority of depth perception (§III.B.1). 

Fig. 3 shows the probability distribution of the magnitude of 

the tip velocity vector (same data as Fig. 2).  At each speed, 

the curve shows the fraction of the samples having that speed 

or lower; for example, 90% of samples are below 2 mm/s.   

B. Human-in-the-Loop Dynamics 

We cannot design manipulation aids without considering 

that the aid is inside the eye-hand feedback loop. Although 

reducing a human to a linear system obviously neglects many 

details, this approach has been successfully used for over 50 

years in the design of aircraft control systems and flight 

instrumentation [15].   Fig. 4 shows a simple human-in-the-

loop feedback model.  The operator internally develops a goal 

position RH, then uses visual feedback to move the hand to the 

desired position. The human ―controller‖ CH functions well 

with a certain range of dynamics GH.  An introduced 

manipulation aid transduces the hand motion X into some tool 

motion Y.  If GA (the aid dynamics) is poorly chosen, it will 

destabilize the overall eye-hand feedback. Of particular 

concern is the time delay or phase lag at the loop critical 

frequency (where the open-loop gain drops below unity). 

Human performance studies have shown that the Bode plot 

of the human frequency response exhibits a 45° intercept at 

the loop critical frequency [16], generating the same sort of 

frequency response as a classical feedback controller.  It is 

only near the critical frequency that the human controller is 

subject to the constraints of loop stability; at lower frequencies 

there is more individual and temporal variation of human 

control behavior.  The critical frequency of the human eye-

hand feedback loop varies somewhat by task, but is generally 

found to be in the range of 0.5 to 2 Hz [17, 18]. 

C. State of the Art in Microsurgical Manipulation Aids 

Table I summarizes the state of the art in manipulation aids 

for microsurgery such as eye surgery.  First we classify 

systems (columns), and then consider characteristics (rows). 

The most common approach to surgical robots has been 

master-slave teleoperation [19], which enables improved 

accuracy through motion scaling and low-pass filtering of 

tremor.  This technology has been brought into the routine 

practice of endoscopic surgery by the da Vinci robot (Intuitive 

Surgical) [20].  Although not designed for eye surgery, the 

availability of da Vinci has led to investigations of its 

applicability [21]; kinematic limitations have led to the 

development of a prototype micropositioner accessory [22].  

Other investigations into teleoperated eye surgery have 

Fig. 4.  Simple feedback model of the human-in-the-loop system with a 

manipulation aid.  Tremor is modeled as a disturbance  DH added to the hand 

motion.  Eye-hand feedback acts to minimize the effect of this disturbance.  

GA is the dynamic contribution of the aid system, which may destabilize the 

overall eye-hand feedback. 
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Fig. 2.  Spectra of position error and acceleration during ―hold still‖ task.    
The acceleration spectrum shows a 10 Hz tremor peak, yet in the position 

spectrum, low-frequency error dwarfs this 10 Hz peak, leveling off in the band 
where visual feedback is effective.  In this visual feedback band, error is 

greater in the vertical (visual depth) direction. 
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Fig. 3.  Probability distribution of the tool tip velocity during ―hold still‖ task. 
This is the empirical Cumulative Distribution Function (CDF), plotted with a 

logarithmic vertical scale to show the detail in both distribution tails.  A 
Gaussian CDF would be a straight line on these axes, so the curvature shows 

strong skewing. 
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generally involved purpose-built hardware [23-25].  Among 

such systems, we choose the JPL RAMS robot [26] as the 

exemplar for the table because its complete implementation 

allows performance to be compared. 

Another approach is cooperative control, where the 

operator guides the end of a robot arm using an attached grip 

that senses the force applied by the hand.  The arm‘s passive 

stiffness prevents tremor from disturbing the tool position.  

Measured hand force is converted into an arm velocity goal, 

which is implicitly low-pass filtered by the 9dynamics of the 

arm.  This creates the effect of viscous damping that attenuates 

tremor.  We choose the steady-hand robot [27, 28] as our 

exemplar, since it was developed for eye surgery. 

In the Micron approach, a handheld tool actuates its own tip 

to cancel tremor.  This concept is analogous to the optical 

image stabilization in a handheld camera, and uses no robot 

arm.  The greater stability of the tool tip compared to the 

handle is entirely due to the active stabilization of the 

measured tip position with respect to a goal point expressed in 

a fixed coordinate system.   

1) Manipulation Aid Characteristics 

We now consider system characteristics (rows in Table I).  

A common technique for reducing the effect of tremor is 

motion scaling: causing the motion at the output to be a 

fraction of the hand motion.  The operator then makes larger 

motions with greater relative accuracy.  Scaling preserves 

human-in-the-loop stability, since the flat frequency response 

need not add delay.  Because of its rigid connection between 

input and output, cooperative manipulation cannot support 

motion scaling.  In effect, the damping of cooperative 

manipulation attenuates tremor by low-pass filtration alone.  

Because of the prompt force-feedback to the hand, this does 

not destabilize eye-hand feedback as it would in a position-

input system (§II.F), but it limits voluntary control bandwidth. 

Workspace intrusion refers to the additional hardware or 

other ergonomic constraints added to the surgeon‘s workspace 

by the aid system.  This is a concern because there is a great 

deal of other equipment also in use, most importantly the 

surgical microscope, which must have a clear sight-line.  A 

slave arm or cooperative arm necessarily intrudes into the 

workspace, and Micron introduces optical constraints with its 

requirement for a sensor sightline.  In steady-hand cooperative 

manipulation, the surgeon directly grasps the tool, preserving 

this familiar interface.  In master/slave operation, the input 

device has no mechanical connection to the output.   A 

surgeon using da Vinci works in a virtual environment entirely 

separated from the patient, which enables telemedicine, and is 

also beneficial for local use due to the unfavorable ergonomics 

of conventional lapar33oscopy.  The situation is different in 

eye surgery, where the surgeon directly views the interior of 

the eye through the lens using a surgical microscope.  The 

RAMS robot demonstrates that a master/slave system for eye 

surgery can preserve this work pattern, but then both the 

master and slave intrude into the surgeon‘s workspace. 

An aid supports force feedback if forces exerted on the tool 

can be directly felt by the operator.  Micron preserves the 1:1 

force feedback of unaided operation, but, having no 

mechanical ground, it is fundamentally incapable of providing 

scaled force feedback.  In microsurgery, 1:1 force feedback is 

of limited value because the tool tip is small and the tissue is 

soft, so an imperceptible force can create pressure high 

enough to cause damage.  One study has found that in 

vitreoretinal surgery, 75% of the time contact forces were 

below 7.5 mN, a level perceptible by only 19% of surgeons 

[29]. 

Scaling up such forces to be perceptible might offer a 

significant benefit [30].  However, force feedback in surgical 

robots remains an open research problem [31, 32].  The 

difficulty in eye surgery is increased by the need to integrate 

the force sensor into the intraocular portion of the 0.9 mm 

diameter tool shaft [33].  Master/slave control with force 

feedback also faces fundamental stability challenges that tend 

to limit force scaling to small ratios [34]. Cooperative 

manipulation uses force input, avoiding these stability 

problems, so is well suited to force feedback.  Then high 

scaling ratios must be used so that feedback remains clear 

when superimposed on the hand force needed to overcome the 

system‘s damping effect.  Greater than 60:1 force scaling has 

been demonstrated [35].    

Set-and-forget hold allows the tool to be ―parked‖ in a fixed 

location so that it can serve as a ―third hand.‖  This is easily 

implemented in a robotic-arm system.  Micron is handheld, so 

it cannot support this feature.  

2) Aid Comparison Summary – Advantages of Micron 

Of the two robot-arm approaches, master/slave operation 

has potential for a desirable combination of features, but the 

design complexity and production cost are significant practical 

barriers.  Cooperative systems have a clearer path to force-

TABLE I 

COMPARISON OF MICROSURGERY MANIPULATION AIDS 

 Unaided Master/slave Cooperative Micron 

Motion scaling: No Yes No Yes 

Workspace intrusion: No  Slave arm & master Arm Active tool, sensor sightlines 

Force feedback: 1:1 Research area Yes (superimposed on damping) 1:1 

Set and forget hold: No Yes Yes No 

Features: Current practice 
Could combine all of the above 

features, telemedicine 

Inexpensive position-output 

actuators and simple control 

Hand-held operation improves 

user acceptance and safety, 

mechanical simplicity 

Challenges/costs: 

Tremor limits 

accuracy & 

repeatability  

Unproven force feedback 

performance / greatest mechanical 

and control complexity (high cost) 

Dexterity fundamentally limited 

by  force → rate  user interface 

and low control bandwidth 

Manipulator size and range, 

high bandwidth control / 

measurement subsystem cost  
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feedback operation, and several advantages in implementation 

cost and simplicity, such as the elimination of the master and 

the use of position output (admittance) servomechanisms, but 

the sluggish force-input response limits dexterity. 

Compared to these robot-arm systems, the biggest 

advantages of Micron are intuitive operation, safety, and 

economy.  Micron is hand-held, so can offer the same intuitive 

feel as a conventional unaided tool.  This improves user 

acceptance by preserving existing surgical skills.  Hand-held 

operation also has a safety advantage because Micron requires 

a far smaller range of motion than alternative systems, and 

because the surgeon remains in gross control of the tool 

motion at all times, able to quickly withdraw if the patient 

moves, or to finish a procedure unaided if the system fails.  

Micron does not need to duplicate the function of the 

surgeon‘s arm, so is mechanically simpler, getting by with 

fewer degrees of freedom and a much smaller range of motion.  

D. Micron Implementation Challenges 

Although the Micron approach is intuitively appealing and 

reasonably obvious, so far as we know the only such systems 

to reach the stage of implementation are the various versions 

of Micron [36-38] and its descendant ―ITrem‖  [39].  This is 

likely due to the considerable engineering challenges of 

achieving adequate performance in the manipulator and 

position measurement subsystems.  Micron‘s tremor 

suppression is entirely dependent on the control system 

performance, whereas in a robot arm system, the control 

bandwidth need only be adequate to pass the voluntary 

component of motion. 

Micron development began 15 years ago [40]. In 2003,  

[41] described the first implementation of Micron that 

integrated a three degree-of freedom (3-DOF) manipulator and 

6-DOF position sensing into a handheld instrument.  During 

the course of this development, concurrent studies of hand 

motion during simulated microsurgery [1] led to the 

realization that in order to achieve useful accuracy 

improvement, motion must be suppressed at frequencies well 

below 10 Hz, lower than could be accurately detected with the 

inertial sensors in [41].  The amplitude of motion to be 

suppressed at these lower frequencies is also considerably 

larger, increasing the required range of motion.  Although [41] 

demonstrated measurable attenuation of simulated 10 Hz 

tremor in bench-top tests, it had become clear that it was 

incapable of canceling the lower-frequency components of 

hand motion, and so was never developed to the point where 

handheld operation could be demonstrated.   

This paper reports on subsequent developments that have 

enabled Micron to demonstrate a significant quantitative 

improvement in handheld accuracy.  The largest single change 

was architectural, replacing inertial sensing and open-loop 

control with DC-accurate optical sensing and closed-loop 

control.   The challenges of manipulator range and control 

were also substantial.  We prototyped a magnetic manipulator 

and two other piezoelectric manipulators [36, 37] before 

developing the design described here, which has a range of 

motion six times that of [41].   Mechanical refinements also 

reduced problems with friction and backlash nonlinearities, 

fragility, and instability of kinematic parameters that 

necessitated frequent recalibration.  Combined with the use of 

charge control to minimize actuator hysteresis (§II.L), and 

overall position feedback, the contribution of actuator error to 

system performance was drastically reduced, so that tremor 

reduction is now limited by system delay (§II.N). 

Section II describes the design of the current Micron system 

(Fig. 5), which includes solutions to a number of integration 

and control issues that appeared in handheld testing, notably 

the design of effective cancellation filters that do not 

destabilize the human feedback loop (§II.F),  development of 

ways to gracefully handle manipulator saturation (§II.I), and 

robust closed-loop control of the manipulator (§II.K).  

In Section III we present experimental results from 

handheld testing by three trained surgeons and three non-

surgeons.  A three minute video provided by the authors 

shows Micron operation and experimental results (available at 

http://ieeexplore.ieee.org and http://youtu.be/6Vt81EiXR5o).   

II. DESIGN 

A. System Architecture 

The major system components (Fig. 6) are the handpiece, 

optical tracking system, custom driver and signal conditioning 

Handpiece 

PSD 

cameras 

Electronics 

Fig. 5.  Micron system, showing tool, position sensors, and electronics. 
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Fig. 6.  Micron system architecture.  The handpiece contains the manipulator 

(which actuates the tip to cancel hand motion) and mechanically coupled 
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electronics, data acquisition cards, and a PC that runs real-time 

LabVIEW control software.  Optical measurement determines 

the 6-DOF pose of the handgrip and tool.  A feedback loop 

running at 2 kHz servos the tool tip to a goal position that is 

computed based on the measured hand motion.  To achieve the 

manipulation accuracy that Micron makes possible, the 

operator must have some high-power magnifier, but Micron 

does not require any integration with microscope optics.  

B. Handpiece Design 

The handpiece design packages the manipulator and 

position measurement components into a small, lightweight 

(40 g) handheld tool.  The current design places the 

manipulator and LEDs in a housing of maximum diameter 50 

mm, mounted on the distal end of the handgrip (Fig 7).  

Although wider than desired, the indented star-like shape of 

the housing does allow the tool to be held within 15 mm of the 

microscope sightline.  The grip itself contains only wiring.   

 The manipulator (Fig. 8) has a 3-DOF parallel 

configuration similar to ref. [42], but the actuators and 

flexures undergo a complex distributed deformation (Fig. 9) 

that does not permit a simple geometric kinematic model.  The 

manipulator is under closed-loop control based on a direct 

output pose measurement, so kinematic approximation error 

does not compromise system accuracy (§II.H).  A flex-circuit 

connects the electrical components, and a clear bore through 

the grip allows passage of tool leads such as optical fibers.   

 The requirement for a compact, high-bandwidth actuator 

with roughly 1-mm range of motion is challenging.  The 

manipulator design depends on a unique piezoelectric bending 

actuator (Thunder
®
 TH-10R, Face International Corp.) that 

uses a laminated metal construction to achieve a large range of 

motion with a stiffness greatly exceeding that of all-ceramic 

bending actuators.  High stiffness gives the manipulator a 

static force output capability far in excess of microsurgical 

requirements, and also benefits system performance by 

increasing the frequency of manipulator resonances (§II.J).  

The piezoelectric actuators require high voltage (-240 V to 

+480 V) but minimal current (4 mA peak).  Hysteresis and 

nonlinearity are reduced by controlling the total charge stored 

in the actuator rather than the applied voltage (§II.L). 

In the current system the most important performance limits 

are determined by manipulator characteristics.  See §I.D for 

comparison to the previous ref. [41] design.  Greater range of 

motion, smaller size, and higher bandwidth would all be 

desirable (in decreasing order of importance); the present 

force (> 1 N) and slew rate (> 100 mm/s) are more than 

adequate.  Bandwidth is discussed in §II.N.   

 Fig. 10 shows the volume that can be reached by a typical 

40 mm tool tip.  The lateral (XY) range varies with the tool 

length, and is significantly larger than the Z range.  Though 

the extent of the workspace is nearly 2 mm, the largest 

enclosed cube is approximately 400 µm on a side.   

C. Coordinate Systems and Notation 

The human-in-the-loop Micron system (Fig. 4) has a serial 

kinematic chain with two variable components: the hand and 

the manipulator.  This establishes three useful reference 

frames for the coordinates of any point  : the fixed world 

coordinates   ,  the hand coordinates   , and the manipulator 

coordinates   .  The world coordinates are arbitrarily defined 

by the pose of the PSD cameras. The manipulator coordinate 

system moves with the tool.  Its origin is at the tool tip and its 

orientation is as shown in Fig. 8.  The hand coordinates are 

defined to be the identical to the manipulator coordinates 

when the manipulator is in the null position, so the origin of 

the hand coordinates is where the tip would be in a 

conventional rigid tool. If the pose of the manipulator is 

represented by a 4x4 linear homogenous transform    then 

this may be used to convert between coordinate systems:  

        

In the Fig. 4 human-in-the-loop model, the response of the 

 

Fig. 7.  Micron handpiece, showing tool and position sensor LEDs (visible 

through the window in the housing). 

 

Fig. 9.  An exaggerated depiction of the deformation of the actuator and 

flexure for a single leg in the manipulator (twice the actual range of motion).   

 

Actuator pair

Upper at tachment    

Flexure  

Mounting block   
 

Fig. 8.  Micron three-link parallel piezoelectric manipulator.  Axes show the 

orientation of the tip coordinate system.  Each leg of the manipulator has two 

actuators mechanically series-connected in a folded configuration, generating 

approximately 600 µm of motion (detail Fig. 9).  Each actuator assembly is 

rigidly fixed to the base plate and is connected to the star-shaped output plate 

by a polypropylene flexure. See also the video at http://ieeexplore.ieee.org or 

http://youtu.be/6Vt81EiXR5o which shows the manipulator in operation. 
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Micron manipulation aid is expressed as a function: 

               , 

so   will be used to refer to the null tip position and   to the 

actual tip position (       ).    

D. Position Measurement 

Position measurement for Micron imposes demanding 

requirements for noise and latency because measurement noise 

creates undesirable tip motion and latency fundamentally 

limits canceling performance (§II.N).  The measurement 

subsystem optically tracks the pose of both the tool and the 

handgrip at 2 kilosamples/s over a 4-cm workspace [43].  The 

major components are two position-sensitive-detector (PSD) 

cameras, signal conditioning electronics, infrared light-

emitting diodes (IR LEDs), and an LED driver. 

A PSD is a specialized large-area photodiode that makes an 

analog position measurement of the centroid of a light source.  

A lens focuses the IR light onto the PSD.  A long-pass IR 

filter excludes much ambient light, reducing interference and 

shot noise.  (We refer to this lens/filter/PSD combination as a 

camera, though it does not capture an image.)  Each camera 

allows measurement of an LED position in two degrees of 

freedom.  Each PSD tracks multiple LEDs simultaneously 

using frequency domain multiplexing.  The LEDs are 

modulated at distinct frequencies between 8 and 20 kHz [43].   

Two separated PSD cameras allow each LED position to be 

triangulated in three dimensions.  The manipulator  pose    is 

recovered from the positions of a triad of LEDs mounted on 

the tool holder [44].  Because the manipulator has only three 

degrees of freedom, the hand pose    can be reconstructed 

from the tool pose using only one additional LED mounted on 

the handle.  The hand pose defines   , the null tip position. 

The measurement noise of the LED position is white, with 

vector amplitude of 0.74 µm RMS in the full 1 kHz 

measurement bandwidth.  The tip position    is by definition 

the origin of the manipulator coordinates, but achieving this 

desired reference requires calibration of the tip location with 

respect to the LEDs (using a pivot calibration procedure).  

Since the LEDs are offset from the tip, error in the pose 

orientation creates a lateral error in the tip position 

proportional to this offset.  With a typical tool length the 

resulting tip noise is 5.7 µm RMS at full bandwidth.  Although 

the control loop runs at the 2 kilosamples/s measurement rate, 

the control bandwidth is considerably less, about 100 Hz 

(§II.N), and this is also the bandwidth of the 200 samples/s 

data collection in §III.  The tip position noise in this reduced 

100 Hz bandwidth is 1.8 µm RMS.   

E. Small-Signal Model 

To understand the operation of Micron, first consider a 

generic small-signal model of a feedback system with 

disturbance (Fig. 11).  In Micron the manipulator generates a 

motion that is mechanically added to the hand tremor and 

other disturbances D(s) to generate the tip motion Y(s).  A 

suitably chosen controller C(s) can compensate for the 

manipulator dynamics G(s), driving the tip to the goal position 

R(s).  This negative feedback subtracts out the disturbances 

without requiring any direct measurement of D(s). 

The Micron small-signal model (Fig. 12) includes this 

position servo loop (Fig. 11) as a component.  In the Fig. 4 

human-in-the-loop system, a manipulation aid such as Micron 

converts hand motion X into tool motion Y.  The hand motion 

X is a combination of the human‘s desired motion RH and the 

tremor disturbance DH.  The cancellation filter H(s) computes 

R(s), the reference for the position servo loop, from a 

measurement of this hand motion.  Conceptually R(s) is an 

estimate of the human reference position RH.  If H(s) 

recovered RH perfectly and the position servo loop tracked 

R(s) perfectly, then Y(s) = RH.   It is inherent in Micron‘s 

handheld implementation that there is a unity-gain feed-

forward path from input to output (X to Y).  Non-intuitively, 

this mechanical connection sums the desired motion RH into 

the disturbance that the position servo loop must reject: 

D(s) = RH + DH + DO 

Y(s) 

Fig. 11.  Position servo loop small-signal model with disturbance.  This servo 

loop stabilizes the tip position without any direct measurement of hand 

motion, canceling disturbance from any source. 
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Disturbance 
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R(s) 

Controller 

 
Manipulator 

 

Goal  

Position 
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C(s) G(s) 
+ 

− + 

+ 

Other disturbance: DO 

Y(s) 
R(s) 

Cancellation filter 

H(s) 

H(s) 

 Hand motion:  
 X = RH + DH 

+ 

+ 

D(s) 

Position servo loop 

Fig. 12.  Micron small-signal model with cancellation filter.    Hand motion 

is a combination of the desired motion RH and tremor DH (see Fig. 4).  This 
motion is measured and filtered to establish the goal position so that 

voluntary motion is possible.  The position servo loop is from Fig. 11.   

 
Fig. 10.  Manipulator workspace.  Lateral (XY) tip motion is larger than axial 

(Z) motion due to the tool lever arm. This volume defines the largest 

disturbance that can be cancelled and limits the achievable motion scaling. 
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If the RH disturbance component is imperfectly cancelled, then 

it sums with R(s) ≈ RH though the C(s) G(s) forward path, 

creating position error.  In practice interaction between these 

two paths is negligible because the bandwidth of the position 

servo loop is necessarily much greater than that of the 

cancellation filter (§II.N, cf. Fig. 14, Fig. 24). 

F. Cancellation Filter 

H(s) has a generally low-pass response, since it must have 

unity gain at low frequencies so that the goal remains within 

the manipulator workspace in spite of gross hand motion, and 

should have high attenuation at 10 Hz to suppress high-

frequency tremor components.  The filter requirements are 

defined both by the nature of tremor (§I.A) and the dynamics 

of the human eye-hand feedback loop (§I.B). 

Referring to the human-in-the-loop system model (Fig. 4), 

Micron‘s dynamics (GA) can be approximated by the 

cancellation filter H(s), because the other dynamics are too 

fast to be relevant to the human operator.  Though we have not 

performed system identification for the human-in-the-loop 

Micron system, our experience with cancellation filter design 

suggests that the critical frequency is near 1 Hz.  We have 

found that if H(s) is a simple low-pass filter, the corner 

frequency must be set above 1 Hz in order for intuitive eye-

hand coordination to be preserved. From Fig. 2, it is evident 

that the amplitude of tremor below 1 Hz is considerably 

greater than the peak near 10 Hz. As the cutoff frequency is 

reduced, the response begins to feel ―bouncy‖ even though the 

step response of H(s) is well-damped.  The response continues 

to deteriorate to near-unusability at 0.5 Hz, below which there 

is a transition to a different control regime where all sense of 

manipulating a rigid tool is lost, and it feels more like 

operating a flight simulator. 

Motion scaling provides tremor attenuation without 

compromising eye-hand stability (§I.C).  The Micron handle 

and tip can move independently, so Micron can implement 

motion scaling.  But given a scaling gain      ,  to permit a 

desired voluntary tip motion yv,  the manipulator range must 

accommodate the differential hand/tip motion             . 
Unfortunately, a handheld manipulator has a very small 

workspace, making impractical the sort of manual ―clutching‖ 

[20] or ―re-indexing‖ [45] feature that is usually used in 

motion-scaling master/slave systems to allow large voluntary 

motions during scaling.  However, motion scaling can be 

approximated by a shelving filter with a low corner frequency 

  , a flat shelf  near 1 Hz with amplitude     (the scaling 

region), and then a high corner frequency     (above 1 Hz).  

The unity gain at DC insures that the manipulator remains 

approximately centered during large voluntary motions, yet 

there is still considerable attenuation at tremor frequencies.  

From a control perspective, this can be viewed as lead-lag 

compensation of the Fig. 4 human feedback loop. 

Fig. 13  shows the structure of the Micron cancellation 

filter.  In addition to implementing the shelving response, it 

also incorporates a velocity limiter. The two component filters 

are IIR second-order sections with quality factors QL = 0.7 and 

QH = 0.62.  Fig. 14 shows the simulated frequency response of 

Micron with the two sets of parameters shown in Table II. 

TABLE II 

CANCELLATION ALGORITHM PARAMETERS 
 

Algorithm               

Scaling: 0.15 Hz 2 Hz 1/3 1 mm/s 

Low-pass: n/a 1.5 Hz 1   

     

The scaling response has no more phase lag than the low-

pass response at 1 Hz, even though it provides 10 dB more 

attenuation from 0.4 Hz to 4 Hz.  The delay from disturbance 

motion measurement to the compensating tip motion causes 

the decrease in attenuation above 4 Hz (§II.N). 

Referring to Fig. 3, we see that 1 mm/s is exceeded 30% of 

the time, so the velocity limiter operates frequently (not only 

on sporadic jerky motion such as in Fig. 1).  Fig. 14 does not 

reflect the amplitude-dependent effect of velocity limiting.  As 

long as the voluntary motion does not exceed the limit, there is 

no destabilizing effect on eye-hand feedback. 

G. 3D Kinematics 

To generalize the Single-Input-Single-Output (SISO) small-

signal model (Fig. 12) to 3D kinematic operation, Micron uses 

transform matrices to convert positions between three 

coordinate systems: world, manipulator, and link-length space 

(Fig. 15).  The optical tracker measures the positions of the 

handle and tip LEDs (§II.D), computing the manipulator pose 

   and the null tip position   , which is where the tip would 

be in a conventional tool.  This is filtered by H(z) to find   , 

the goal position in world coordinates.  Pose    is a linear 

 

+ 

+ 

     

   

     

   

 

 

   

Fig. 13.  Cancellation filter structure.  This implements the shelving 

response of the scaling algorithm, and also limits the goal velocity. 

      

 
Fig. 14.  Simulated Micron low-frequency response, hand to tip.  The scaling 

response is labeled with the corresponding filter parameters. 
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homogenous transform (§II.C), so multiplying by the matrix 

inverse (  
    ) converts the goal position into manipulator 

coordinates, giving   , an offset relative to the current tip 

position. This transform is analogous to the           node 

in the small-signal model (Fig. 12), so    plays the role of the 

error signal in the feedback loop.  High frequencies have been 

removed from   , giving the effect of passing forward the 

high frequency content in     with a negative sign, creating 

negative feedback at high frequencies. 

H. Inverse Kinematics 

The manipulator is a 3-DOF parallel linkage.  Continuing 

with the signal flow in Fig. 15, we convert the desired tip 

position into link lengths (   ) using the inverse kinematics 

transform    , which is calibrated by an offline procedure 

that generates position sweeps in the manipulator link-length 

space, measures the resulting tip motion, and then finds the 

linear transform matrix that best generates this motion.  The 

kinematics of even an ideal parallel manipulator are nonlinear, 

but the maximum Micron angular deflection is less than 2°, so 

this error source is negligible.  The significant manipulator 

nonlinearities come from other sources, such as nonidealities 

in the actuators (Fig. 9).  Typical calibration error is 40 µm 

RMS, out of ±400 µm actuator travel.  This level of error does 

not significantly affect the performance of the closed-loop 

system (§II.N and Fig. 31). 

I. Alternate Goal Substitution 

Large hand motions often cause manipulator saturation, 

creating two problems: first, when the manipulator is 

saturated, no cancellation can take place, and second, though 

the controller does manage saturation (§II.K.1), this is done on 

a per-axis basis, creating undesirable tip motion during 

prolonged saturation. To avoid this, when the goal position is 

not reachable, the controller substitutes a reachable alternate 

goal position (    ) that is in the direction of the goal.  This 

largely eliminates spurious tip motion on saturation by 

keeping the position servo loop closed, and maintains at least 

partial cancellation by pointing the tip toward the goal.       is 

computed by renormalizing     to fall within the workspace, 

assuring a smooth transition back to normal operation.   

Another layer of saturation control adaptively increases the 

cutoff frequency of the cancellation filter H(z) when the 

manipulator nears saturation, gracefully avoiding saturation by 

compromising this filter response.  This adaptation begins at 

50% of the manipulator travel, rising to a tenfold increase at 

saturation onset.  The cancellation filter also limits the goal 

displacement introduced by the velocity limiter to 300 µm.  

Due to the manipulator range, it is not possible to suppress 

jerks much larger than this, so allowing a larger difference 

would only prolong recovery from saturation.  

J. System Identification 

System identification was performed to experimentally 

determine a linear discrete-time model            .  This is an 

approximation of the behavior of the entire signal path, 

excluding the controller C(z).  The term      models the pure 

delay in the system, which results from actual processing 

latency and also other sources of lag such as the anti-

alias/anti-imaging filters on the input and output.  The 

estimated delay was      samples (2 ms).     

The manipulator has three degrees of freedom, so Micron is 

a Multi-Input Multi-Output (MIMO) system.  In three open-

loop response tests, a swept-sine signal (transformed by the 

inverse kinematics) was used to excite tip motion along each 

of the three Euclidian tip coordinate axes.  The Matlab™ 

system identification toolbox was used to generate both 

nonparametric (spectral) frequency response estimates and 

state-space models for motion in each direction.  Using the 

nonparametric response as a reference, we found the lowest 

order models with good fidelity over the 10 Hz to 500 Hz 

range (Fig. 16).  The response is flat at low frequencies, but 

there are pronounced manipulator resonances above 100 Hz.   

There are two distinct dynamic operating modes.  Moving all 

three actuators together generates axial translation, while 

opposed actuator motion creates angular deflection, causing a 

   (manipulator pose) 

  
     H(z) 

Coordinate 

transform 

    

             

      

Inverse  

kinematics 

C(z) 

(world goal) 

  
  

(link-length error) 

   
(null tip position) 

    

Fig. 15.  Control system with kinematics, showing the coordinate 

transforms that implement the 3D signal flow.  The optical tracker measures 

both the system input (hand motion   ) and the output (manipulator pose  
  ).  Inversion of the pose creates negative feedback that forces the tip to 

track   
 (an estimate of the voluntary motion). 
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Fig. 16.  Experimental manipulator frequency response, superimposed on the 

response of the identified system models.  There are poorly damped 

resonances above 100 Hz, and the dynamics differ significantly between 
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lateral displacement of the tip.  The z stimulus excites axial 

motion, giving the axial model        (order 8).  The x and y 

stimuli generate lateral motion, giving two similar models 

         (order 11).  

K. Controller Implementation 

The availability of a linear model from system identification 

enables use of theoretically-grounded control methodologies.  

Although less general than state-space approaches such as 

linear-quadratic optimal control, we chose Internal Model 

Control (IMC) because we preferred a frequency-domain 

approach, and we found that it was a good match for particular 

control issues that Micron faces: manipulator resonances are 

poorly damped, dynamics vary due to tool changes and 

manipulator aging, and different tasks demand different 

tradeoffs between speed, noise, and settling time. 

1) Internal Model Control 

Internal Model Control (IMC), originally developed for 

process control in the chemical industry, has also found use in 

control of electro-mechanical systems [46].  IMC uses a 

control topology that incorporates a system (plant) model in a 

straightforward way (Fig. 17), and has an associated control 

design methodology that permits proofs of robustness and 

optimality [47].  There is also a wide body of practice 

providing specific guidance for managing a wide range of 

control problems, including those listed above [48].  IMC can 

handle underdamped dynamics, is robust in presence of model 

error, and has two parameters that can be varied to achieve a 

range of stable responses.  IMC also addresses time delay and 

saturation nonlinearity.     

First, the plant model    and    are determined by analysis or 

system identification; then   and   must be designed.  In 

Micron    is stable and minimum-phase, making control 

design fairly straightforward (although IMC could still be 

applied if it were otherwise).  Note that if              (no 

modeling error), and we set     and       , then the 

output tracks the input perfectly, with only a time delay.  In 

practice this is impossible, both because of inevitable 

modeling error, and also because      is usually improper 

(having more zeros than poles), so it cannot be realized as a 

digital filter.  This is more than a numerical difficulty—it 

represents the physical reality that the plant has a lowpass 

characteristic, so infinite bandwidth is unattainable.  

The IMC architecture has a feedforward character—during 

the system time delay, a step change in      passes directly 

through to the output, modified only by  .    is a unity-gain 

lowpass filter that creates robustness by rolling off modeling 

error at high frequencies (where uncertainty is greater).  The 

system‘s closed-loop response is then approximately that of  .  

The control bandwidth goal specified by   is a ―robustness 

knob‖ on the controller that can be varied over a wide range 

without compromising stability.  Even after significant 

changes in the plant, a stable (but slow) response can usually 

be restored by setting the control bandwidth sufficiently low.  

  also serves to attenuate high-frequency measurement noise 

that would otherwise be fed into the plant control input.  Since 

lowpass filtering in the IMC controller benefits robustness, 

additional poles can be added to   (or F) to make    proper.   

In Fig. 17, note the straightforward compensation for the 

destabilizing effect of time delay by including a delay in the 

system model.  The factoring of   into    and     allows the 

construction of a causal inverse       since the system with lag 

cannot be directly inverted.  In practice,    serves as an 

additional knob on the controller which can be used to adjust 

the phase margin (and thus the gain flatness and step response 

damping).  The unmodeled poles in    create additional lag 

that may be compensated by increasing      
 Fig. 17 can be redrawn in various nearly equivalent forms.  

In particular, from an optimal control perspective, IMC can be 

seen to be a special case of state feedback with an observer 

[49].  More interesting for our purposes is Fig. 18, which 

places IMC in the framework of classical control by 

rearranging the architecture into an equivalent unity-gain 

negative feedback configuration (like Fig. 12).  If    is a single 

pole, then a PID controller can be used to implement IMC.  

One of the most common uses of IMC in industrial process 

control is to derive PID control parameters from a model [48]. 

In Micron the system dynamics are more complicated, so 

PID control is inadequate, but Fig. 19 shows a controller that 

is equivalent to Fig. 18 when       , and that rivals PID 

control for simplicity. As noted above,      is usually 

improper, so this transformation implicitly replaces    with the 

proper    , in effect adding zeros to the plant model. This 

approximation is benign, being almost the same as adding 

additional poles to  .  A tunable   is still needed, so in Micron 

we use this first-order filter: 

      
      

   
 

Y(s) 

Fig. 18.  Block diagram equivalent to Fig. 17 drawn with unity negative 

feedback, showing similarity to PID and other conventional controllers. 
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receive the same command.  The difference of the measured and predicted 

positions (disturbance or modeling error) is fed back to the input. 
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Continuing with the signal flow in Fig. 15, we see that the 

controller operates in the link-length space.  This choice does 

not affect the small-signal response, but makes it easier to 

avoid actuator saturation.   In the presence of  saturation,  an 

IMC controller is susceptible to integral windup, which can be 

avoided in several ways.  In the Fig. 17 architecture, saturation 

and other nonlinearities can be incorporated directly into the 

system model, but this is not robust to modelling error.  There 

are optimal anti-windup techniques for IMC [50], but a simple 

and robust technique incorporates a conservative saturation 

into the controller so that the plant never actually saturates 

[51].  Fig. 20 is a more detailed view of the Micron controller, 

including a rate and position saturation block that avoids 

overshoot on saturation at the cost of a slower response not 

expoiting the full control authority.  This sub-optimal response 

is acceptable in Micron becase position saturation is prevented 

by other means (§II.I) and rate saturation is rare due to the 

high speed of the manipulator.  This limiter is distinct from the 

velocity limiter in the cancellation filter (Fig. 13). 

2) MIMO Control 

In Fig. 15 the controller input     is a vector of link-length 

errors and the output     is a vector of the updated link lengths.  

As with other frequency-domain design techniques, IMC most 

naturally controls Single-Input Single-Output (SISO) systems, 

but it can be extended to MIMO systems when the dynamics 

can be decoupled into non-interacting SISO systems.  In the 

simplified IMC architecture (Fig. 19), only the inverse filter 

     incorporates system dynamics, so it is only there that 

MIMO interactions must be considered.  In the Micron 

controller (Fig. 20) the decoupled systems are axial and lateral 

motion (as discussed above in §II.J).   In the inverse filter the 

3-vector of commanded manipulator link-lengths (dm) is 

decoupled into a scalar axial component and a 3-vector of 

lateral components (dl).   The axial component (da) is the 

mean of dm, and dl = dm – da.   

3) Design parameter specifics 

The high-order models from system identification (§II.J) 

can be used directly for simulation, but for conceptual 

simplicity and implementation efficiency, we reduced the xyz 

model orders to 5, 5 and 6 by discarding states with low 

Hankel singular values (Matlab balred).  The xy models 

were then combined into a single lateral model by taking the 

mean of the complex pole/zero locations (Fig. 21).  Because 

the lateral mode has a lower first resonance than the axial 

mode, the lateral controller design is performance limiting, 

and will be presented in more detail.   

Fig. 22 shows the sixth-order design of      , the inverse 

filter for the lateral mode.  Two pairs of zeros are used to 

cancel the lowest frequency manipulator poles (peaks in model 

response, Fig. 21).  One pair of poles approximately cancels 

the lowest manipulator zero pair (valley in model response).  

The damping of this pole pair has been increased to 0.1, 

leaving a slight dip in the Fig. 21 filtered response.  This 

increases robustness, since modeling error can reveal   ‘s 

underdamped response, creating long settling times [48]. 

Because the response becomes overly sensitive to modeling 

error, control bandwidth cannot be robustly extended much 

Y(s) 

Fig. 19.  IMC architecture simplification possible when       , giving a 

lead-lag controller with approximate inversion of plant dynamics. 
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above the first manipulator resonance (150 Hz), yet the 

manipulator has considerable gain well above this frequency 

(Fig. 21).  It is futile to attempt inversion of plant dynamics 

out to arbitrarily high frequencies, so realistic controller 

design amounts to a decision of what low-pass response the 

system should have.  Although IMC design is done in the 

frequency domain to facilitate understanding of high-

frequency stability, in normal operation the time-domain 

response is more relevant—the open-loop step response 

should have minimal overshoot and ringing.  For this reason, 

the remaining poles of       are configured as a Bessel filter.  

Because      was chosen to be first-order, an additional 

pole pair was added to       to ensure adequate high-

frequency gain margin near the 400 Hz resonance, which is 

strongly dependent on the mass of the (interchangeable) tool 

tip.  Since a low-pass response creates phase lag, there is 

inevitably some compromise between bandwidth and 

robustness.  This compromise is reflected in the Fig. 21 

filtered response, which is much more well-behaved than the 

uncompensated manipulator, having a nearly ideal Bessel 

response, but also has considerably more phase lag than the 

uncompensated system, limiting the stable unity gain 

bandwidth, and also more directly affecting the ability to resist 

tremor disturbance (see §II.N).   

Allowing for the lag introduced by this non-ideal inverse, 

the nominal system delay time    was 8 cycles (4 ms).   Both     

and the control bandwidth     can be varied to achieve 

different responses.  We experimentally determined two sets 

of tuning parameters (Table III), which we refer as 

(approximately) critically damped and underdamped. 
 

TABLE III 
CONTROLLER TUNING PARAMETERS 

Tuning        

Critically damped: 8 cycles 100 Hz 

Underdamped: 6 cycles 200 Hz 
 

L. Charge Control 

Continuing with the Fig. 15 signal flow, now the new link 

lengths     are converted to charge increments.  As discussed 

in §II.B, Micron implements charge control to linearize the 

piezoelectric actuators.  Although a voltage drive scheme is 

relatively straightforward to implement using a high-voltage 

amplifier, the position response from a voltage signal is 

difficult to characterize, being both nonlinear and hysteretic, 

with a dependence on frequency [52]. Due to the high level of 

piezoelectric strain made possible by the Thunder actuator, 

this nonlinearity can reach extreme levels, exceeding 1/3 of 

full scale.  In contrast, the position response to charge (the 

integral of current) is far more linear and repeatable [53]. 

Current errors inevitable, and a charge source has a high 

output impedance, so any practical charge control scheme 

must have some way to keep the output voltage under control.  

This is usually done by rolling off the output impedance at low 

frequencies, transferring back to voltage control.  In Micron, 

charge control is implemented by a PID controller that acts to 

minimize the difference between the measured actuator 

voltage and that of a simulated ideal capacitor. The integral 

gain cancels slowly-varying current errors, while the 

proportional gain compensates the feedback loop, resulting in 

a transfer to voltage mode below 0.8 Hz (where the optical 

position feedback is highly effective).  The derivative gain 

damps manipulator resonances in a manner similar to [54].   

M. Closing the loop 

To close the Micron position servo loop (Fig. 15), the 

computed charge increment is used to determine the output 

current for the next cycle, giving a first-order-hold discrete-to-

continuous-time conversion, which reduces the sample-rate 

harmonics sent to the actuators.  During the next cycle, the 

resulting actual position is once again read by the optical 

tracker, closing the feedback loop. This feedback counteracts 

all effects that disturb the tip from the desired goal position: 

hand tremor, inverse kinematics error, and output loading. 

N. System Characterization 

From a user‘s perspective, Micron‘s performance comes 

down to how the tool tip moves when the handle is moved: 

whether desired motion is passed through and undesired 

motion is rejected.  No apparatus was available for generating 

handpiece motion with the necessary accuracy and bandwidth 

for system characterization, so we obtained equivalent 

frequency and transient response results by perturbing the 

digital position signal in the running real-time system, creating 

the same actual tip motion that would have been generated by 

the simulated handle motion.  The frequency responses vary 

depending on the manipulator mode excited, but overall 

performance is limited by the lowest resonance, which is 

lateral.  For brevity we present only lateral responses. 

At low frequencies the position servo loop has high gain, so 

the closed-loop response from handle to tip is very similar to 

the simulation in Fig. 13.  More interesting is the portion of 

the response above 4 Hz that is determined by the servo loop‘s 

declining ability to reject the tremor disturbance.  Fig. 23 

shows the frequency response in this disturbance-dominated 

region, where tuning parameters (Table III) become important 

and the cancellation algorithm is irrelevant.   From a control 

perspective, the ability to resist disturbance is the sensitivity, 

and the Bode integral theorem states that in a plot such as Fig. 

23 the areas between the curve and the 0 dB line are equal 

above and below the line.   Feedback cannot resist disturbance 

at all frequencies, but it can move the sensitivity to 

frequencies where it is less harmful.  Referring to Fig. 2, we 

see that tremor disturbance peaks near 10 Hz, then drops off 

rapidly.  For tremor rejection, the greater attenuation of the 

underdamped tuning at 10 Hz is far more important than its 

threefold magnification of nonexistent 90 Hz disturbance.  We 

confirmed this conclusion by measuring the position servo 

tracking error in each tuning when disturbed by the same pre-

recorded tremor signal (Table IV). 
 

TABLE IV 

3D POSITION TRACKING ERROR 

Tuning µm RMS µm Max 

Underdamped: 4.8 41 

Critically damped: 6.1 62 



Submitted to IEEE TRANSACTIONS ON ROBOTICS 

 

12 

 

Another perspective on output sensitivity is given by the 

delay only curve in Fig. 23.   This is the frequency response of 

an idealized Micron-like system that measures the handle 

motion and then actuates the tip to perfectly cancel this motion 

with the same 3 ms delay as Micron.  This involves no 

considerations of feedback at all—it is simply the destructive 

and constructive interference as frequency is varied of two 

sine waves having a fixed time offset.  In the relevant band (< 

30 Hz) the servo loop implements a pure delay (as designed), 

so the only way to reduce sensitivity is to reduce the delay 

time (or predict the future disturbance). 

Active stabilization inevitably introduces some noise into 

the true tip position because the negative feedback moves the 

tip to cancel out measurement noise. Though there is little 

actual disturbance at frequencies with high sensitivity, any 

measurement noise is also magnified. The amplitude of this 

induced tip noise is 1.6 µm RMS (underdamped tuning) and 

1.2 µm RMS (critically damped) when measured with a fiber 

optic displacement sensor (Model D63, Philtec Inc.) This 

motion is invisible in handheld operation because it is small 

compared to the residual tremor.  This scalar measurement is 

not directly comparable to the measurement noise vector 

amplitude in §II.D, but is approximately the expected 

magnitude of this noise passing through the system bandwidth.   

Fig. 24 shows the open-loop frequency response of the 

position servo loop.  The underdamped tuning increases low-

frequency gain, but at the cost of reducing the phase margin 

from 64° to 42°.  The corresponding closed-loop bandwidth 

(not shown) increases from 84 Hz to 123 Hz, but with 5 dB 

gain peaking. 

Fig. 25 shows Micron‘s response to a 200-µm step.  There 

is an initial transient where the position servo loop works to 

cancel the disturbance, then the remainder of the response is 

due to the cancellation filter Q(s).  The    region is in 

common to both curves, and lasts about 300 ms.  Note that the 

scaling (ks) region has a constant slope, rather than being 

horizontal.  It was not certain a priori that users would tolerate 

such a response, but we have found that this re-centering 

action is imperceptible in practice because the natural open-

loop drift in hand position has a similar speed.   

Fig. 26 shows the initial transient, which is determined by 

the response of the position servo loop.  The spike to 200 µm 

is the disturbance itself.  With the underdamped tuning the 

recovery is followed by 70 µm of overshoot and ringing 

 
Fig. 26.  Detail of initial transient in response to handle position step.  The 

disturbance is injected numerically, so the rise-time is one sample period.   

The critically damped tuning has hardly any overshoot, but is slower in 

bringing the tip back to zero (less bandwidth). 

 
Fig. 23.  High-frequency motion disturbance rejection (sensitivity) for both 

control tunings.  ―Delay only‖ is a theoretical limit.  Inevitably disturbance is 

magnified at high frequencies, but this is harmless because tremor disturbance 

drops off above 10 Hz (Fig. 2).  Note linear frequency scale. 
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Fig. 24.  Open-loop Bode plots for both controller tunings.  The  underdamped 

tuning mainly increases the gain (reducing the phase margin). 
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Fig. 25.  Tip motion due to 200-µm step in handle position, by algorithm 

(underdamped tuning).  The labels show the cancellation filter parameter 

controlling each part of the response.  The initial transient is the leading edge 

of the disturbance step, see Fig. 26 for detail. 
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(corresponding to the negative attenuation at 90 Hz). 

III. EVALUATION 

A. Experimental Design 

To evaluate the true performance of Micron with a human 

in the loop, a series of handheld positioning tests was 

performed by six subjects under a board-approved protocol.  

The subjects included three who had no significant prior 

experience with micromanipulation or use of a microscope 

(novice group, age 25 ± 1) and three ophthalmic surgeons 

(surgeon group, age 41 ± 21).   

The experiment involved moving the tool tip above the 

surface of a laser-engraved rubber target.  The subject viewed 

the workspace through a 29X stereo surgical microscope 

(Zeiss OPMI 1).  The tool was a 27 gauge hypodermic needle 

(400 µm shaft diameter). An oblique lighting source was used 

to create a strong tool shadow depth cue, as is present also in 

retinal surgery.  Fig. 27 shows the target and tool tip as seen 

through the microscope.  The tasks performed were: 

 Hold still: hold the tip stationary above the lower-right 

cross for 30 seconds. 

 Circle trace: trace continuously for 60 s around a 500 

µm diameter circle.   

 Move and hold: on a tone cue, move to the next cross 

(600 µm), then hold there for 15 seconds.  Repeat four 

times.  This task resembles common procedures in 

microsurgery, allowing evaluation of Micron during 

(relatively) rapid motion.  The elapsed time for the 

move portion was also recorded.  

In all tasks the subjects were instructed to try to maintain 

the tool tip just above the target surface.  Lifting the tool 

during the move portion of the move and hold task was 

permitted. There were also three test conditions: cancellation 

using the low-pass  and  scaling algorithms (§II.F), and off, 

where cancellation was disabled. This gave nine different 

task/condition combinations.   

We expected that subjects‘ performance would vary during 

the experiment, initially improving due to practice, then 

dropping due to fatigue.  In order to prevent this nuisance 

variable of task ordering from biasing the results, the order of 

test conditions and tasks was systematically varied in a nested 

Latin square design.  Each experiment had three groups of 

nine tasks, separated by two four-minute rest periods.  This 

gave 27 tasks per experiment (approximately 45 minutes).  

There is a clear performance difference between the test 

conditions, so it was impossible for testing to be blind.  In 

order to aid learning of the different operation modes, we told 

the subject before each task whether they would use 

―Algorithm A‖ (scaling), ―Algorithm B‖ (low-pass) or that 

cancellation was off.  To address the possibility that motivated 

subjects might bias the results, we analyzed how handgrip 

motion changed under the different conditions. 

Data from the trials were logged at 200 Hz for analysis.  In 

order to separate the perceptual depth error from the horizontal 

position error, the analysis rotated the data so that the Z axis 

was parallel to the microscope view.  Because experiments 

with an earlier prototype of Micron exhibited a learning curve 

[38], each subject did the experiment 6 times to allow time for 

convergence.  Data from sessions 4 through 6 were pooled and 

ANOVA was used to determine the statistical significance of 

the results.  These experiments were conducted with an earlier 

version of the Micron controller described in §II.K, which 

implemented a response intermediate between the critically 

damped and underdamped responses in Table III and §II.N. 

B. Results 

Fig. 28 gives an overview of the experimental results in the 

form of learning curves.  The curves were similar across tasks 

and error metrics, so we have shown the mean across tasks of 

the 3D max error.  Performance has largely converged by the 

fourth experiment, and the final ranking of scaling < low-pass 

< off is already established by the second session.  The 

learning curve for the surgeons is much flatter, especially in 

the off condition, suggesting that their existing skills did 

transfer to this experiment. The low-pass algorithm requires 

little training, already showing benefit on the first day, while 

the scaling performance improves with experience. 

 Fig. 29 shows the effect on the 3D max error of the 

experimental variable algorithm.  The Tukey-Kramer 

procedure with error criterion        was used to generate 

95% confidence bounds.  In comparison to the control 

condition (off), the effect of the two cancellation algorithms is 

both significant and substantial, with scaling superior to the 

low-pass algorithm. 

The task and the subject experience level also had 

significant effects on error, however these results are 

unsurprising, and do not reveal anything about the 

Fig. 27.  Target and tool tip (hypodermic needle).   The target is laser-

engraved rubber; oblique lighting creates a tool shadow depth cue. 

500 µm 

 

Fig. 28.  Learning curves for 3D max error (mean across all tasks), broken 

down by experience level.  The flatter curve for surgeons suggests their 

experience did generalize to the experimental tasks.  
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performance of Micron.  The reason for introducing multiple 

tasks was to evaluate whether cancellation was more effective 

for some tasks than others.   The high probability of no effect 

that ANOVA found for the interaction between task and 

algorithm           means that the relative benefit of the 

algorithms was similar across all three tasks.  Likewise, the 

high probability of no effect on the interaction between 

experience and algorithm          indicates that the benefit 

of cancellation was similar for novices and surgeons.  A 

nested analysis of individual subjects within the groups 

revealed only one significant interaction: subject(experience) 

by task          .  That is, some subjects did significantly 

better on some tasks (independent of algorithm), but there was 

no detectable variation by subject of the improvement due to 

cancellation. Except where marked with ‗*‘, all of the reported 

measures of both algorithms were found to be significantly 

different from the off condition and from each other.   

Table V shows the effect of cancellation broken down by 

experience level.  Both surgeons and novices benefited 

significantly from scaling, but only surgeons showed a 

significant improvement for low-pass.   

 

 
Table VI shows the relative performance of the algorithms 

under several error metrics. While RMS error is familiar to 

engineers, in surgical applications maximum error is likely to 

be more important.  Note that cancellation has a greater 

relative effect on the maximum error than on the RMS error. 

1) Depth Perception Error  

Although we do not expect the 2D error (excluding depth 

error) to be a superior predictor of surgical outcomes, the 2D 

error reveals how depth perception affects task performance.  

The 3D error is necessarily greater than the 2D error, but the 

expected increase due to the added degree of freedom 

is          .  The larger measured ratios of 3D/2D error 

show that vertical (depth) error is larger than horizontal error.  

Fig. 30 directly shows the increased magnitude of depth error 

compared to horizontal error in the hold-still task.  This 

distribution is aligned within 5° of the microscope sight-line. 

Although the stereo surgical microscope permits binocular 

depth perception, this is a weak cue.  To a considerable extent 

microsurgeons rely on other cues such as tool shadow and 

tissue deformation [55].  Therefore these experiments used an 

oblique light source that gives a strong shadow cue and used a 

deformable rubber target.  Because depth error results from a 

perceptual limitation, it is not improved by cancellation, so its 

predominance increases when cancellation is on (Fig. 30(b)).  

2) Other Effects of Cancellation  

A frequently expressed concern about the Micron concept is 

that the tool motion due to active cancellation might cause 

injury at the sclerotomy (the surgical opening where the tool 

passes inside the eye).  We examined the mean across all trials 

of the 3D maximum motion during the hold still task at both 

the tip and the sclerotomy location, and found that while 

motion is reduced by 44% at the tip, it is also reduced by 30% 

at the sclerotomy.  Thus Micron is less likely, not more likely, 

to damage the sclera than a traditional instrument.  This 

finding that motion at the sclera is reduced by cancellation is 

inevitable.  Kinematically the tip is fixed during cancellation, 

while the handle is free to move.  This constraint that the tip 

remains fixed also constrains the motion of other points on the 

tool shaft (to a lesser degree).  

Table VII shows that the move time for the move and hold 

task increased with cancellation.  It may be that subjects 

learned that to get the best results with canceling, they had to 

move more slowly.  Scaling also makes it more natural to 

move slowly because it scales down speed. 
 
 

TABLE V 

COMPARISON OF 3D MAXIMUM ERROR BY GROUP  (µm) 

 

Off Low-pass Scaling

264 214 135

100% *81% 51%

318 245 178

100% 77% 56%

Novice

Surgeon

 

 

Fig. 30.  Effect of cancellation on point clouds of low-frequency position error 

during hold-still task.  With or without cancellation, error is larger in the 

visual depth direction, but cancellation is more effective at reducing the 

horizontal error than the depth error because the positioning accuracy 

ultimately depends on eye-hand feedback.  The user does not perceive this 

depth error, so the accuracy of the human-in-the-loop system becomes limited 

by perception, not tremor. 

 

 

Fig. 29.  Main effect of algorithm on 3D max error.  The error bars are 95% 

confidence intervals.  Cancellation significantly reduced error in comparison 

to the control condition (off).  
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As mentioned in §III.A, the experimental design is not 

blind, so results are vulnerable to subject bias.  To rule out this 

possibility, we analyzed the hand motion when cancellation 

was on and compared it to the motion when off.  This was 

done by scoring the accuracy as described above, but using the 

null tip position (  ) instead of the actual tip position. Table 

VII shows that hand motion increased with cancellation; 

however, this can be explained without supposing subjects 

were biased against the cancellation condition.  Because 

Micron attenuates all hand motion, it reduces the gain of the 

visuomotor feedback loop (Fig. 4), impairing the ability of 

eye-hand feedback to stabilize the hand position. Tremor is 

reduced at the tip, but not by as much as one might expect 

given the measured attenuation from handle to tip.  The 

increase in handle motion was not significant for in the low-

pass condition, but was significant in the scaling condition. 

3) Qualitative Results 

 Fig. 32 shows the effect of Micron with the low-pass 

algorithm on magnitude of the 3D position error during a hold 

still task.  Although the high-frequency (≈10 Hz) shaking is 

nearly eliminated, the larger low-frequency motion passes 

through unattenuated, so the effect of cancellation is modest. 

Even so, the filter introduces a fraction of a second of lag, 

which destabilizes the eye-hand feedback loop, limiting the 

effectiveness of a low-pass filter alone.  Fig. 31 shows another 

hold still task where the scaling algorithm was used.  In this 

case the tremor is larger, in part due to the effect discussed 

above, yet the resulting tip motion is significantly smaller 

because motion below 1.5 Hz is attenuated.  In both Fig. 32 

and Fig. 31 the tip position tracks the goal quite well, rejecting 

the tremor disturbance and canceling open loop errors.  So 

performance is limited primarily by the ability of the goal 

filter to attenuate tremor, and not by the active position 

stabilization feedback loop (§II.N; cf. Table IV and Table VI). 

Fig. 33 shows the effect of the different algorithms on tip 

motion during the circle tracing task.  Accuracy is greatly 

improved under the scaling condition, though the invisible 

depth error may be significant (see above). 

IV. DISCUSSION 

These results show the feasibility of the concept of an 

actively stabilized hand-held tool for tremor suppression 

―such a system can give a statistically significant reduction in 

 

Fig. 33.  Effect of cancellation on 2D tip motion.  These are typical results from three different circle tracing tasks (approximately 15 seconds each circle). 
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Fig. 32.  Effect of low-pass cancellation algorithm on tremor. Although the tip 

tracks the goal position quite well, the 1.5 Hz low-pass filter allows most of 

the tremor to pass through into the goal position. 
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Fig. 31.  Effect of scaling cancellation algorithm on tremor.  Low-frequency 

components are now attenuated in the goal position, and also at the tip. 
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OTHER EFFECTS OF CANCELLATION  
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position error for both trained surgeons and non-surgeons.  

The motion scaling cancellation algorithm gave the largest 

improvement, a 46% reduction in 3D maximum error, while 

the improvement with low-pass cancellation was also 

significant at 21%.  The performance improvement was 

similar across all three tasks tested and all six subjects.   

Error in depth perception is an issue in any 

micromanipulation with handheld tools using a microscope, 

and it limits the benefits of Micron in the experiments 

presented here.  In the future, the precision measurement 

intrinsic in Micron could be used as part of a surgical 

navigation system to help the operator accurately control the 

depth of the tool tip. 

The present tracking system has high accuracy, high 

bandwidth, and measures both tip and handle motion with the 

same sensor.  Other position sensors could be used, offering 

their own advantages, such as relaxing the line-of-sight 

constraints on tool motion and workspace layout.   

Increased manipulator range of motion and reduced size 

would both be beneficial.  A manipulator design under 

development uses piezoelectric linear motors to improve the 

range of motion and size (with reduced force and slew rate.) 

This study has described Micron‘s principles of operation 

and has experimentally demonstrated significant manipulation 

accuracy improvements. The use of synthetic tasks has 

enabled precise quantification by eliminating anatomic 

variability, but distances the results from the ultimate medical 

application. Improved accuracy may not always give 

improved clinical outcomes [56], but  medical instruments and 

techniques co-evolve, creating more effective interventions. 

We have encouraging preliminary results on the use of Micron 

on biological tissues [57] and the use of procedure-specific 

goal position computation [58].  Duplicates of the system 

described here are now being evaluated in two other 

laboratories, and future work with Micron will involve 

realistic surgical tasks. 
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