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ABSTRACT 
 

This paper presents the vision and path planning software design of a totally autonomous vehicle built to 
compete in the 13th Intelligent Ground Vehicle Competition, IGVC. The vehicle, Calculon, is based on a powered 
wheelchair and uses a variety of sensors for its navigation and obstacle avoidance including a 3CCD Sony color camera, 
an outdoor laser range finder, a DGPS, 2 wheel encoders and a solid state compass. The modules forming the core vision 
system include: filters, color classifier, image segments, and line finder. Our color classifier is based on a modified 
implementation of an adaptive Gaussian color model similar to those used in some skin detection algorithms. A 
combination of various image enhancing filters and the color classifier allow for the isolation of possible obstacles 
within the image. After filtering the image for areas of high brightness and contrast, the line finder performs a Hough 
Transform to find lines in the image. Our path planning is accomplished using a variety of known and custom algorithms 
in combination including a modified road map method, a Rapidly Exploring Trees method and a Gaussian Potential 
Field’s method. This paper will present the software design and methods of our autonomous vehicle focusing mainly on 
the 2 most difficult components, the vision and path planning. 
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1. INTRODUCTION 
 

The Robotics Laboratory at the University of Central Florida proudly 
presents a software design for an intelligent ground vehicle.  The vehicle named 
Calculon was designed and built to compete in the 13th annual Intelligent Ground 
Vehicle Competition, IGVC [1], held at the Traverse City Resort and Spa from 
June 10th – 13th  2005.  The IGVC is an international college level competition 
where teams from Japan, Canada, and all over the United States compete in three 
challenges: the Design Challenge, the Navigation Challenge, and the 
Autonomous Challenge.  The Design Challenge consists of teams submitting a 
fifteen page technical document summarizing all of the systems created and the 
design process used by the teams, a power point presentation highlighting the 
key systems and components used to build the vehicle and finally an overall 
inspection of the vehicle.  The Navigation Challenge consists of an open course 
where waypoints are marked and the vehicles have to navigate to nine waypoints 
within six minutes.  The waypoints are given to the teams in latitude and 
longitude positioning and in meters.  The teams are not given the location of any 
of the obstacles, though, that are strategically placed throughout the field to trap 
vehicles.  The Autonomous Challenge consists of a course that involves the 
vehicle staying between two painted lines.  The vehicles have to follow the lane 
over a ramp, through a sand pit, while avoiding obstacles at all times.  Calculon 
was designed and built with these challenges in mind.  The vehicle won third 
place in the Design Challenge, eighth place in the Navigation Challenge, and 
twelfth place in the Autonomous Challenge and earned the team fourth place 

overall.  In this paper, we present the software systems that were designed and created for the vehicle.  The two most 
challenging aspects of the competition, machine vision and path planning, are discussed in detail in this paper. 

 
 
Figure 1:  Calculon 



 
1.1 Computer vision requirements 

For a vehicle to successfully navigate the Autonomous Challenge course it must be able to detect painted road 
lines on grass, concrete, or other surfaces.  This requires the use of machine vision because the vehicle is not allowed to 
cross over or drive on top of a single line to complete the course.  The system must be able to detect both lines on the left 
and right side so that the center of the lane can be located.  Finding other obstacles on the course such as barricaded and 
orange barrels can be done without the use of machine vision, but the system described in this paper is also capable of 
this task since these obstacles are common on both the Autonomous Challenge and Navigation Challenge courses.  
Image filtering and line finding techniques are used to make the system robust enough to operate in the outdoor and 
varied lighting conditions representative of the IGVC. 
 
1.2 Path planning requirements 

The two different courses described for the vehicle to traverse require different approaches for decision making at 
the IGVC.  Therefore the path planning system has been separated into two parts, one for Autonomous Challenge the 
other for Navigation Challenge.  The system designed for the autonomous challenge must be able to plot a course that 
stays in between two lines and avoids obstacles while not having a destination point to travel to.  For the Navigation 
Challenge, the course plotted has a waypoint destination to reach, so the software does not need to worry about road 
markings, only a safe course to the individual waypoints that is short and safe. 

 
2. DESIGN PROCESS 

 
Through experience and researching robotic systems design and implementation, we found that a strict and 

unyielding design processes such as The Design Life Cycle or the Spiral Model were not well suited to our group, lab 
structure or our approach to the Intelligent Ground Vehicle Competition.  Instead, we have followed an incremental 
design and development process, which allows for more flexibility when needed as well as for parallel development from 
various sub-groups which, was essential to our team.  To prevent integration problems interfaces to different components 
were well defined in advance, so that the different teams could develop there software independently of each other.  The 
final incremental model we chose followed the ‘Validation V’ [2]. 
 
2.1 Validation V and W 

Our incremental design flow followed the ‘Validation V’.    This design flow follows the same path as many other 
design paradigms, namely requirements stage, system design, construction, testing and completion.  With just this simple 
flow, it is hard to see how this paradigm is incremental.  However, by connecting the ‘Validation Vs’ together we see 
that we get a ‘W’ formation which represents the synchronization of multiple teams working together.  With the use 
standardized software interfaces and protocols, the teams were able to attain modularity to the entire project that allowed 
many of the components to be built or worked on simultaneously and in parallel.  The ‘W’ paradigm works exceedingly 
well with this level of modularity.  During project pre-planning, we found this design paradigm to be most realistic for 
our group in terms of the actual implementation.  Many others seemed as though they may work well in theory, but for a 
group of our small size and project such as an IGVC vehicle, the ‘Validation V’ and ‘W’ concepts were appropriate. 
 
 

3. COMPUTER VISION 
 

In the design of the vision system for Calculon, there were two main goals:  identification of road lines and common 
roadside barricades.  For the vehicle to navigate both courses at the IGVC these tasks had to be achieved.  In previous 
years machine learning and statistical training of recorded data was the primary method of creating our machine vision 
systems.  This method alone did not achieve the results desired and required too much training time and a lot of work to 
make system changes.  To combat this issue, our design plan for machine vision called for the creation of tools to better 
facilitate building a vision system that could be quickly changed to incorporate new methods of obstacle detection.  The 
end result was the development of a rapid prototyping tool called the Discover Vision Engine.  The Discover Vision 
Engine makes use of image filters and line finding algorithms to create a vision system capable of performing the tasks 
needed at the IGVC. 
 



3.1 Discover Vision 

 
 
Figure 2: Discover Vision GUI 
 

The Discover Vision Engine is modeled after existing tools such as MatLab, except aiming to present an 
interface capable of easily manipulating images instead of algorithm development.  The Graphical User Interface, Figure 
2, has two main components:  a code editor and an image display.  The code editor incorporates syntax highlighting and 
line numbers.  The image displays uses two modes: a single pane for showing the full details of an image, or four panes, 
each containing a separate scaled down image, allowing multiple filtered images to be viewed simultaneously in real 
time.  This is extremely useful to determine how affective a specific or combination of filters can be.  The Discover 
Vision Engine can load and process images from a number of sources, including image files, video cameras, and saved 
videos. 
 

A simple scripting language developed for the tool is used to interface between the GUI and the C++ backend.  
The scripting language supports multiple classes and member functions and is easily extendible.  The scripting language 
supports overloaded functions as C++ does, and also offers the ability to create user defined functions that can be called 
with a click of a button.  To increase speed, the script is compiled into byte-code for the engine interpreter to run.  Each 
‘recompile’ happens without any interruption to the programs execution, meaning you can immediately see the 
difference on the images, even in the middle of processing a video stream. 
 

A user can open, save, and create new scripts allowing different aspects of the vision system to be tested 
individually.  Furthermore, the compiled scripts can be exported as well.  Because of the modular design, the engine 
interpreter can be separated from the GUI and used in another framework without difficulty.  Therefore the interpreter is 
included in the final obstacle detection system, and never needs to be changed to incorporate a different sequence of 
image processing steps.  The developer only needs to create a different script using the Discover Vision program, and the 
interpreter will use it in the final application.  This makes changing a vision system for different tasks very simple to do 
because the final application does not need to be modified, saving valuable time. 
 



3.2 Obstacle detection 
To support the vision system, a 3 CCD Sony HandyCam DV camcorder positioned at the front of the vehicle, is 

angled toward the ground. It captures high-resolution DV video (720x480) and streams the frames to the computer at a 
rate of 30 frames per second. The vision system utilizes the Microsoft DirectX interfaces to grab frames from the video 
for processing.  
 

The modules forming the core vision system include: filters, color classifier, image segments, and line finder. 
The color classification system used by Calculon is an implementation of an adaptive Gaussian color model similar to 
those used in some skin detection algorithms [3].  These skin detection algorithms have been modified to meet the needs 
of color classification in the fixed and predictable environment of the robotic vehicle.  To classify the incoming pixels 
with respect to color, the system must first be trained on a set of sample images and masks.  Each mask is custom made 
to train for a specific color from specific sample images which represent typical images the robot may encounter. 
 

In training, two images are 
opened, a sample image usually taken 
with the Sony DV camera, and a custom 
black and white mask.  This mask was 
designed to capture whichever specific 
color we are trying to train.  Some were 
created specifically to train the system 
to detect grass, others to train it to detect 
orange barricades or white buckets.  The 
black and white masks use white to 
represent training pixels and black to 
represent non-training pixels.  Different 
from most of the skin detection 

algorithms this is based on, the system exploits the fact that the images being trained on are not only representative of the 
colors we are trying to detect, but also representative of the typical images we can expect during actual vehicle 
operation.  Because of this, the algorithm is training not only to detect the colors it wants, but to also specifically not 
detect the colors it does not want.  This is a subtle but powerful difference. 
 

The training algorithm starts by creating an RGB color cube data structure which can be implemented with 
either 24 bit color (16.7million colors) or 16 bit color (65 thousand colors).  Each cell in this data structure is a floating 
point value which starts at 0.0.  The next step in preparation of training is to create two Gaussian spheres.  The first is 
based on a value, sigma-large, and the second is smaller, based on sigma-small.  Because of the larger sigma the first 
also has a higher floating point value in the center.    Once the training image and its mask are loaded for training, the 
system goes through each pixel in the training image.  If the corresponding pixel in the mask is white, a value of the 
large Gaussian sphere are added to the color cube data structure, centering the sphere on the color cube cell 
corresponding to the RGB value of the pixel currently being trained on in the image.  Similarly, if a pixel in the mask is 
black (a non training pixel); we subtract the values of the small Gaussian sphere from the color cube data structure, again 
centering on the cell corresponding the RGB value of the training pixel.  The use of a larger and higher valued Gaussian 
sphere for positive training gives the algorithm an overall bias towards detecting our training color, as opposed to not 
detecting all other colors. 
 

Once training images and masks have gone through the algorithm, live detection can be done incredibly fast.  
To detect the specified color in a new test image, the algorithm simply has to go through each pixel in the image, map 
that pixel's color into the color cube data structure and use a threshold value to decide whether or not a color is to be 
classified or not.  Threshold values are typically low but positive values since the Gaussian cloud created around the 
specified color in the color cube data structure should have positive values while all other colors in the images should 
have negative values. 
 

Overall the algorithm sacrifices a slow and long offline running time for training which is worse case O(nmp3) 
where n is number of image rows, m is number of image columns and p is the large sigma value chosen, in order to 
achieve very fast worse case O(nm) online color classification.   

 

 
 
Figure 3:  Example training images 
 



 
A combination of various image enhancing filters and the color classifier allow for the isolation of possible 

obstacles within the image. This data is passed to the image segments module to extract these possible obstacles into 
segments. Each segment is statistically analyzed for color, texture, size, shape, orientation, and other features to 
determine first whether this segment is an obstacle and secondly what type of obstacle the segment represents. This 
method is used primarily for the identification of larger objects such as construction cones, buckets, and ramps which are 
typical of the IGVC. 
 
3.3 Line detection 

Line detection is performed by applying a Hough Transform [4] across a segmented filtered image.  The filters used 
for obstacle detection are done before line detection takes place.  These filters serve to remove noise and other obstacles 
which do not represent road lines.  Filters used include the color classification algorithm, brightness and contrast 
adjustment, and segmentation filter.  The resulting image is decomposed into a matrix and the Hough transform is 
applied to each cell.  Once line segments are identified, an additional step is taken to join adjacent lines together.  This is 
done to fill in gaps between lines which are typical of the Autonomous Challenge course at the IGVC.  By breaking 
down the image into a matrix, it is possible to approximate a curved road line using the Hough transform.  This creates a 
more accurate model of the environment around the vehicle, and makes for more affective path planning.  Figure 3 
shows an example of this process. 

 

 
 
Figure 4:  Example of Hough Transform in segmented image 

 
4. PATH PLANNING 

 
The Intelligent Ground Vehicle Competition provides two challenges for the vehicle to perform in, the Autonomous 

Challenge and Navigation Challenge.  The Autonomous Challenge and the Navigation Challenge are two courses that 
are built to test the vehicle’s ability to avoid obstacles while performing a given task.  For the Autonomous Challenge the 
goal is to stay within two boundary lines on a 500 foot course which includes typical road barricades and barrels and 
varied terrain such as a ramp and sand pit in less than 5 minutes. In the Navigation Challenge the task is to drive to nine 
GPS waypoints in less than six minutes while avoiding obstacles that are designed to trap or block the vehicles path. 
 
4.1 Autonomous Challenge 

For the Autonomous Challenge, the path planning system relies entirely on a local map system.  The robot is 
able to make decisions, plan the path and traverse the course entirely with only local information and a small amount of 
position history.  The actual algorithms used in path planning include a Gaussian Potential Fields [5, 6] method and a 
depth first search.  Within the Gaussian search space higher values indicate a lower probability of being on the path.  
Obstacles and line information from the Laser Range Finder and digital camera are combined into a local map which is 
then converted to Gaussian space.  All obstacles including lines are treated the same in this newly formed search space. 
 
4.1.1 Gaussian search space 

Once the search space is created a depth first search, Figure 4, is performed to find a desired path.  The 
parameters that can be changed for this search are:  the number of branches, branch length, obstacle threshold, and angle 



between branches.  The total depth is variable so that the software will try different possible depths to find the path 
which will travel the furthest.  By find the branch that covers the longest distance it is possible to find paths which do not 
lead into dead ends and traps.  Branch trimming is done by performing radial checks at each branch endpoint and path 
width checks along the branch.  This is done to ensure that that branch does not cross over an obstacle, and that at each 
point in the path the vehicle will be able to turn and change direction successfully.  The total number of possible 
solutions is therefore only limited by the number of obstacles in the local map, local map size, and the algorithm 
parameters.  Typically the search space produces three hundred possible solutions for the vehicle take. 
 
 
4.1.2 Choosing optimal solution 

To decide which of the possible safe solutions is best for the vehicle, information about the path and the 
vehicles travel history are taken into account.  Since all the possible solutions are safe, the safest and longest path should 
be chosen, but this path must not differ too greatly from the direction the vehicle has already been traveling in and it 
should not travel to places already visited.  Paths which maintain the current direction of the vehicle are optimal because 
it prevents the situation where the vehicle may turn around and start traveling the course backwards.  Also, a path which 
travels the greatest distance will in most cases not go into a trap or dead end.  To figure out what direction the vehicle 
has been traveling, DGPS waypoints of the vehicles path are recorded periodically.  Using the most recent information it 
is possible to calculate the vehicles previous trajectory using linear regression.  In addition to comparing to the vehicle’s 
previous heading, each possible solution is compared to the recent history to ensure that it is not going back to points that 
have already been traveled to.  Using this data, in the unlikely event the vehicle travels to a dead end, it is possible to 
turn around and escape this trap.  Once the vehicle has escaped the trap, the next path chosen will be the one that 
maintains the previous headings, but also does not travel back to areas already visited resulting in a continuation of the 
course. 
 
4.2 Navigation Challenge 

While the Autonomous Challenge needed only information on its local surroundings in order to properly steer 
through the course successfully, the Navigation Challenge requires global information in order to most efficiently reach 
each GPS waypoint without getting caught in a trap by obstacles, navigating off course or mistakenly returning to the 
start point.  To record this global information a world map is created dynamically.  To build this world map, the local 
map is copied and added on a set interval.  As the vehicle travels the course, it will slowly build a map of all obstacles 
and waypoints making path planning more reliable. 
 
4.2.1 Rapidly expanding trees 

Using the constructed world map, a modified version of the Rapidly Exploring Random Trees method, RERT 
[7] and Figure 5, is used.  Instead of choosing random branches within the search space, the algorithm performs a 360 
degree scan around the vehicle and chooses the branch endpoint that travels closest to the destination waypoint.  This 
process is then repeated until a path that reaches the desired waypoint is found.  To prevent choosing points which travel 
over or into obstacles, branch checks similar to those used in the Autonomous Challenge are performed.  These checks 
make sure that the vehicle is able to move freely at any point along the chosen path to the waypoint.  This method results 
in an extremely fast search technique which finds the shortest and safest path to the desired GPS waypoint. 
 
4.2.2 Artificial boundaries 

Competition rules require that the vehicle does not travel out of specified boundary lines for the course and that 
it does not return to the starting point until all other waypoints have been reached.  For example, if the vehicle reaches 
waypoint number 1, and then plots a course to the second waypoint that travels through the start box, as soon as the 
vehicle reaches the start box, the run will be over.  To prevent this situation artificial boundary lines are created within 
the world map. When the vehicle is started in the navigation mode, it records endpoints of an artificial box around the 
starting point.  Once the vehicle leaves this starting area, artificial boundary lines are added to the world map.  This 
prevents the path planning algorithm from plotting a course through the starting box.  Once all other waypoints have 
been reached, this artificial box is removed, and the path planner can plot a course back to the start.  The same technique 
is used for creating course boundary lines.  The positions of the boundaries are given to the user at the competition, and 
can be placed into a settings file.  This file is then opened at program start up, and the boundary lines are drawn into the 
world map preventing the vehicle from plotting a course off the competition field. 
 



4.3.3 Limitations 
Although the modified version of the RERT algorithm produces a safe solution quickly, it does not produce the 

most optimal path.  Through simulation and testing it was found the algorithm fails to accommodate traversing to 
destinations that are surrounded by large walls or joined obstacles when information about the wall is incomplete.  The 
result of this caused the vehicle to travel back and forth to try and get to a waypoint until the world map was able to 
model the complete surroundings.  For future implementations of this method a depth first search and a limited scan area 
will account for this.  By using a depth first search with multiple branches analyzed, the shortest path to the waypoint can 
be found.  Also, by limiting the scan sweep to 180 instead of 360 degrees, the vehicle will not be able to continuously 
turn around and is forced to continue moving forward preventing oscillation.  These additions to the method will be 
explored in future version of the path planning software. 

 

 
 
Figure 5:  Potential fields with depth first search 

 
 
Figure 6:  Modified RERT 

 
 

5. CONCLUSION 
 

In comparison to some of our competitor’s, the approach to machine vision and path planning presented here 
leads to a much more robust system. A very common approach used by our competitors is to have totally reactive 
decision making algorithms for path planning. That is, it only considers the environment immediately in front of it. 
These reactive systems run faster allowing the vehicle to react quickly to immediate threats, however it does not plan 
ahead sufficiently to avoid traps.  If a vehicle without proper planning arrived in a dead end, it would not be able to 
reverse and choose an alternative course.  This approach does not result in intelligent decision making.  Although this 
may have lead to good results in the previous competitions, it will not be able to account for real world situations or a 
competition made more difficult in future years.  Future goals of this and other projects is to combine the planning and 
reactive systems together to create a reactive system that still takes into account the higher level goals handled through 
our methods. 

 
In addition to a robust path planning system, the creation of a tool for developing machine vision systems 

provides an advantage over competitors.  Through the Discover Vision Program, different algorithms and image 
processing steps can be quickly tested and proven to work in a changing environment quickly.  Without this ability, 
making changes and testing a machine vision system a tedious and time consuming process.  The option to expand upon 
this tool by incorporating new techniques very quickly also makes enhancing the overall system a simple task.  Our lab 
will continue to build upon the successes we’ve had using these methods and improve upon them for future 
competitions. 
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