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Abstract 
 

This paper describes an inexpensive pico-projector-

based augmented reality (AR) display for a surgical 

microscope. The system is designed for use with 

Micron, an active handheld surgical tool that cancels 

hand tremor of surgeons to improve microsurgical 

accuracy.  Using the AR display, virtual cues can be 

injected into the microscope view to track the 

movement of the tip of Micron, show the desired 

position, and indicate the position error. Cues can be 

used to maintain high performance by helping the 

surgeon to avoid drifting out of the workspace of the 

instrument.  Also, boundary information such as the 

view range of the cameras that record surgical 

procedures can be displayed to tell surgeons the 

operation area. Furthermore, numerical, textual, or 

graphical information can be displayed, showing such 

things as tool tip depth in the work space and on/off 

status of the canceling function of Micron.  

 

1. Introduction 
 

Involuntary tremor is inherent in normal human 
hand motion.  Undesired hand motions limit accuracy 
in many microsurgical procedures in specialties such as 
ophthalmological and neurological surgery, and in fact 
completely prevent certain manipulations that might 
provide clinical benefit if they could be performed [1]. 
When the desired motions have the same order of 
magnitude as hand tremor, the signal-to-noise ratio is 
low, leading to poor performance or even potentially 
serious consequences during microsurgery. An 
example of a procedure that is practically infeasible 
today, and therefore is generally not performed, is 
retinal vein cannulation for injection of anticoagulants 
to clear vascular occlusions.  Successful retinal vein 
cannulation generally requires accuracy at or near the 
level of tens of microns, which is not attainable by 

surgeons using passive handheld tools [1].  Several 
robotic microsurgical systems have been developed in 
response to this problem, including the “steady-hand” 
robotic system [2, 3] and telerobotic systems [4].  Our 
laboratory has followed a fully handheld approach.  To 
cancel hand tremor for accurate medical 
micromanipulation, an active stabilized handheld 
surgical instrument, Micron, has been developed as 
shown in Figure 1. Micron senses its own motion, 
filters the motion to distinguish between desired and 
undesired motion, and compensates the hand tremor by 
actively deflecting its tip.  

To enhance the operation of Micron by surgeons, 

certain virtual cues and annotations can be helpful. 

These include, but are not limited to, the track of the 

movement of Micron, the indications of the current and 

desired locations that Micron points at and the error 

between the two locations, boundary information such 

as the view range of the cameras that take videos of the 

surgery procedures, and depth information about the 

tool tip. Conventionally, information guides and 

annotation to assist the use of Micron were overlaid 

and displayed on a 2D or 3D monitor, which could 

show microscopic views sensed by two cameras. 

However, such overlay of information had a low 

resolution and large latency, which limits surgeons’ 

performance when using Micron.  Also, surgeons need 

to look away from the microscope to watch the monitor 

for virtual information. A microsurgical augmented 

reality (AR) system that overlays biomedical imaging 

data within the stereo operating microscope view itself 

can be a valuable aid for image-guided surgery [5]. 

Numerous AR displays have been developed for 

surgical microscopes, as surveyed in [5], and clinical 

systems are now available, but the cost of these is high.  

This report presents an inexpensive monocular AR 

display, based on a pico-projector, which researchers 

can easily add to a surgical microscope. This system 



possesses the advantages of low cost, high stability, 

easy attachment as an add-on, no interruption to 

surgical workflow, and relatively high resolution and 

signal-to-noise ratio. 

Various medical augmented reality technologies 

have been developed recently.  First is optical or video 

see-through head-mount display (HMD) augmented 

reality, which enables users to observe 3D computer-

generated virtual images overlaid on the real world 

views by wearing see-through HMDs [6]. Second is 

augmented optics, which augments operating 

microscopes and operating binoculars by adding a 

semi-transparent mirror to the optics. The inserted 

mirror reflects the virtual information to the optical 

pathway of the real objects [5]. Third are augmented 

windows, or semi-transparent mirrors put in between 

the real objects and users [5]. Fourth are augmented 

monitors that display augmented video images [5], a 

previous approach used in our lab as mentioned above. 

Fifth is direct projection onto patients [5]. 

Disadvantages of various systems may include high 

cost, limited resolution, system latency, and the 

wearing of cumbersome head-mounted devices. 

The successful development of the AR system 

enables the overlay of virtual information on real 

objects under the microscope. Consequently, surgeons 

do not need to move away from the operation field and 

watch separate monitors.  Virtual cues can be injected 

into the surgical microscope to track the movement of 

the tip of Micron, show the current position of Micron 

and the desired or target position, and indicate the error 

between the current position and desired position. In 

such a way, Micron can be easily operated without 

letting its tip drift far enough from the target to prevent 

active compensation from being performed. Also, 

boundary information such as the view range of video 

cameras can be displayed to tell surgeons the operation 

area.  Furthermore, numerical, text, or graphical 

information such as how deep Micron is in the 

workspace, and whether the cancelling function of 

Micron is on or off, can be displayed.  In addition, 

virtual images including reconstructed surfaces of the 

surgical sites and preoperative medical imaging data 

can be overlaid onto the surgical scene. 

 

2. System design 
 
The AR system consists of an optical system and a 

mechanical support in order to achieve the goal of 
injecting virtual images into the microscope. The 
optical system displays images clearly in the eyepieces. 
It is composed of a projector as the source of virtual 
images to be displayed, two positive lenses to focus the 
light, a prism to bend the optical pathway for more 
convenient positioning of the system, and a beam 
splitter that takes the projected images and reflects the 
light into the eyepiece of the microscope for display. 
The mechanical support provides a closed and rigid 
system for the optical components as well as a 
connection between the AR display system and the 
microscope. 

 

2.1  Requirements 
 
The requirements of the augmented reality system 
involve functionality, affordability, attachment, display 
model, weight, displayed image size, and resolution. 
The system should overlay virtual information to real 
objects under the microscope so that surgeons are able 
to observe the virtual data and real objects 
simultaneously in real time.  In addition, the system is 
desired to be relatively inexpensive. It should be 
attached to the surgical microscope optical hardware as 
an add-on with a monocular display model.  Also, the 
total weight of the system should be less than 2 kg 
because the maximum load allowed for the optical 
hardware of the microscope is 2 kg.  Moreover, the 
size of the injected images should be no smaller than 
the whole eyepiece view. 
 

2.2  Image Source 
 

The image source of a particular medical 

augmented reality system is significant because it 

determines the image quality of the overlaid data and 

limits the overall performance of the system. Aschke et 

al. have compared three commonly-used image 

sources, including mini beamers, liquid crystal display 

panels, and micro displays [7]. They conclude with a 

choice of micro display. However, a micro display, 

 
 

Figure 1. Micron: a handheld microsurgical 
instrument that performs active compensation 

of physiological hand tremor. 
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2.3  Optical System Design 
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3. Results 
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